	Outline
MA 138 – Calculus 2 with Life Science Applications Iterated maps (Section 9.3) Fibonacci's Numbers and a Population Model (Handout)	The goal is to illustrate an application of large powers of matrices. Our primary tools are the eigenvalues and eigenvectors of the matrix. We then illustrate this approach with two familiar examples: Fibonacci's numbers;
Alberto Corso (alberto.corso@uky.edu) Department of Mathematics University of Kentucky March 20 & 22, 2017	a simple population model.
http://www.ms.uky.edu/"ma138	http://www.ms.uky.edu/~ma138
Lectures 26 & 27	Lectures 26 & 27
000000000000000000000000000000000000000	000000000000
Iterated Maps	Criterion for Linear Independence
We restrict to the case in which A is a 2×2 matrix with real eigenvalues.	Let A be a 2 × 2 matrix with eigenvalues λ_1 and λ_2 , and eigenvectors \mathbf{v}_1 and \mathbf{v}_2 , resp. If $\lambda_1 \neq \lambda_2$, then \mathbf{v}_1 and \mathbf{v}_2 are linearly independent.
We saw that in this case the eigenvectors define lines through the origin that are invariant under the map A . If the invariant lines are distinct, we say that $y \uparrow$ the eigenvectors are linearly independent .	As a consequence of linear independence, we can write any vector v uniquely as a linear combination of the eigenvectors v ₁ and v ₂ . That is, $\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2,$ where c_1 and c_2 are uniquely determined.
This notion can be formulated as follows in terms of eigenvectors: If we denote the two eigenvectors by v_1 and v_2 , then v_1 and v_2 are	Apply now A to v (written as a linear combination of the two eigenvectors of A). Using the linearity of the map A, we find that $A\mathbf{v} = A(c_1\mathbf{v}_1 + c_2\mathbf{v}_2) = c_1A\mathbf{v}_1 + c_2A\mathbf{v}_2$
linearly independent if there does not exist a number c such that $\mathbf{v}_1 = c\mathbf{v}_2$.	However, \mathbf{v}_1 and \mathbf{v}_2 are both eigenvectors corresponding to A. Hence, $A\mathbf{v}_1 = \lambda_1\mathbf{v}_1$ and $A\mathbf{v}_2 = \lambda_2\mathbf{v}_2$. We thus obtain
http://www.ms.uky.odu/~ma138	$A\mathbf{v} = c_1\lambda_1\mathbf{v}_1 + c_2\lambda_2\mathbf{v}_2.$

Lectures 26 & 27

Lectures 26 & 27

	0000000000000
This representation of \mathbf{v} (namely, $\mathbf{v} = c_1\mathbf{v}_1 + c_2\mathbf{v}_2$) is particularly useful if we apply A repeatedly to \mathbf{v} . Applying A to $A\mathbf{v}$, we find that	Example 1
$A^{2}\mathbf{v} = A(A\mathbf{v}) = A(c_{1}\lambda_{1}\mathbf{v}_{1} + c_{2}\lambda_{2}\mathbf{v}_{2}) = c_{1}\lambda_{1}A\mathbf{v}_{1} + c_{2}\lambda_{2}A\mathbf{v}_{2} = c_{1}\lambda_{1}^{2}\mathbf{v}_{1} + c_{2}\lambda_{2}^{2}\mathbf{v}_{2},$	
(we used again the fact that \mathbf{v}_1 and \mathbf{v}_2 are eigenvectors of the matrix A). Continuing in this way we obtain $A^{n}\mathbf{v} = c_1\lambda_1^{n}\mathbf{v}_1 + c_2\lambda_2^{n}\mathbf{v}_2$. Dominant Eigenvalue: Many biological processes correspond to matrices with a positive eigenvalue, say λ_1 , strictly larger in magnitude than the other eigenvalue(s) and with the components of the associated eigenvector also positive. In this case the vector $A^{n}\mathbf{v}$ asymptotically approaches the line containing \mathbf{v}_1 . In fact, if $ \lambda_2/\lambda_1 < 1$, we have $\lim_{n \to \infty} \frac{A^n \mathbf{v}}{\lambda_1^n} = \lim_{n \to \infty} \left\{ c_1 \mathbf{v}_1 + c_2 \left(\frac{\lambda_2}{\lambda_1} \right)^n \mathbf{v}_2 \right\} = c_1 \mathbf{v}_1.$	Consider the matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$. Find $A^{20}\mathbf{v}$, where $\mathbf{v} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$.
Moreover, the relative sizes of the components of $A^n \mathbf{v}$ are proportional to	
the components of v1. http://www.ms.uky.edu/~ma138	http://www.ms.uky.edu/~ma138
Lectures 26 & 27	Lectures 26 & 27
010010010000	*0000000000
Example 2 Fibonacci's Numbers	Write $f_0 = 0, \ f_1 = 1, \ f_2 = 1, \ f_3 = 2, \ f_4 = 3, \ f_5 = 5, \ f_6 = 8, \ f_7 = 13, \ldots$
Example 2 Fibonacci's Numbers We are all familiar with Fibonacci's sequence	Write $f_0 = 0$, $f_1 = 1$, $f_2 = 1$, $f_3 = 2$, $f_4 = 3$, $f_5 = 5$, $f_6 = 8$, $f_7 = 13$, In other words, Fibonacci's numbers are given by the recursive relation
We are all familiar with Fibonacci's sequence	- / - / - / - / - / - / - / .
	In other words, Fibonacci's numbers are given by the recursive relation $f_{n+2} = f_{n+1} + f_n$ for $n \ge 0$, with $f_0 = 0$ and $f_1 = 1$.
We are all familiar with Fibonacci's sequence	In other words, Fibonacci's numbers are given by the recursive relation $f_{n+2}=f_{n+1}+f_n$ for $n\geq 0$, with $f_0=0$ and $f_1=1$. Notice that
We are all familiar with Fibonacci's sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, In the West, the Fibonacci sequence first appears in the book <i>Liber Abaci</i>	In other words, Fibonacci's numbers are given by the recursive relation $f_{n+2} = f_{n+1} + f_n$ for $n \ge 0$, with $f_0 = 0$ and $f_1 = 1$.
We are all familiar with Fibonacci's sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, In the West, the Fibonacci sequence first appears in the book <i>Liber Abaci</i> (1202) by Leonardo of Pisa, known as Fibonacci. Fibonacci poses, and	In other words, Fibonacci's numbers are given by the recursive relation $f_{n+2}=f_{n+1}+f_n$ for $n\geq 0$, with $f_0=0$ and $f_1=1$. Notice that
We are all familiar with Fibonacci's sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, In the West, the Fibonacci sequence first appears in the book <i>Liber Abaci</i> (1202) by Leonardo of Pisa, known as Fibonacci. Fibonacci poses, and solves, a problem involving the growth of a population of rabbits based on	In other words, Fibonacci's numbers are given by the recursive relation $f_{n+2} = f_{n+1} + f_n$ for $n \ge 0$, with $f_0 = 0$ and $f_1 = 1$. Notice that $\begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 \end{bmatrix} =$
We are all familiar with Fibonacci's sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, In the West, the Fibonacci sequence first appears in the book <i>Liber Abaci</i> (1202) by Leonardo of Pisa, known as Fibonacci. Fibonacci poses, and solves, a problem involving the growth of a population of rabbits based on idealized (≡ biologically unrealistic) assumptions.	In other words, Fibonacci's numbers are given by the recursive relation $f_{n+2} = f_{n+1} + f_n$ for $n \ge 0$, with $f_0 = 0$ and $f_1 = 1$. Notice that $\begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \cdots$
We are all familiar with Fibonacci's sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, In the West, the Fibonacci sequence first appears in the book <i>Liber Abaci</i> (1202) by Leonardo of Pisa, known as Fibonacci. Fibonacci poses, and solves, a problem involving the growth of a population of rabbits based on idealized (≡ biologically unrealistic) assumptions. What if we wanted to compute 'quickly' (this is the keyword!) the 1000 th	In other words, Fibonacci's numbers are given by the recursive relation $f_{n+2} = f_{n+1} + f_n$ for $n \ge 0$, with $f_0 = 0$ and $f_1 = 1$. Notice that $\begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 \end{bmatrix} =$
We are all familiar with Fibonacci's sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, In the West, the Fibonacci sequence first appears in the book <i>Liber Abaci</i> (1202) by Leonardo of Pisa, known as Fibonacci. Fibonacci poses, and solves, a problem involving the growth of a population of rabbits based on idealized (≡ biologically unrealistic) assumptions.	In other words, Fibonacci's numbers are given by the recursive relation $f_{n+2} = f_{n+1} + f_n$ for $n \ge 0$, with $f_0 = 0$ and $f_1 = 1$. Notice that $\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \dots$ That is, we can write the previous expressions as $\begin{bmatrix} f_n \\ f_n \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} f_n \\ f_n \end{bmatrix} = \begin{bmatrix} f_n \\ f_n \end{bmatrix} \begin{bmatrix} f_n \\ f_n \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 \end{bmatrix} \begin{bmatrix} f_n \\ f_n \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 \end{bmatrix} \begin{bmatrix} f_n \\ f_n \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 \end{bmatrix} \begin{bmatrix} f_n \\ f_n \end{bmatrix} \dots$ From this it also follows that
We are all familiar with Fibonacci's sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, In the West, the Fibonacci sequence first appears in the book <i>Liber Abaci</i> (1202) by Leonardo of Pisa, known as Fibonacci. Fibonacci poses, and solves, a problem involving the growth of a population of rabbits based on idealized (≡ biologically unrealistic) assumptions. What if we wanted to compute 'quickly' (this is the keyword!) the 1000 th	In other words, Fibonacci's numbers are given by the recursive relation $f_{n+2} = f_{n+1} + f_n$ for $n \ge 0$, with $f_0 = 0$ and $f_1 = 1$. Notice that $\begin{bmatrix} i \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \cdots$ That is, we can write the previous expressions as $\begin{bmatrix} f_1 \\ f_1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} \cdots$
We are all familiar with Fibonacci's sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, In the West, the Fibonacci sequence first appears in the book <i>Liber Abaci</i> (1202) by Leonardo of Pisa, known as Fibonacci. Fibonacci poses, and solves, a problem involving the growth of a population of rabbits based on idealized (≡ biologically unrealistic) assumptions. What if we wanted to compute 'quickly' (this is the keyword!) the 1000 th	In other words, Fibonacci's numbers are given by the recursive relation $f_{n+2} = f_{n+1} + f_n$ for $n \ge 0$, with $f_0 = 0$ and $f_1 = 1$. Notice that $\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \dots$ That is, we can write the previous expressions as $\begin{bmatrix} f_n \\ f_n \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} f_n \\ f_n \end{bmatrix} = \begin{bmatrix} f_n \\ f_n \end{bmatrix} \begin{bmatrix} f_n \\ f_n \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 \end{bmatrix} \begin{bmatrix} f_n \\ f_n \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 \end{bmatrix} \begin{bmatrix} f_n \\ f_n \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 \end{bmatrix} \begin{bmatrix} f_n \\ f_n \end{bmatrix} \dots$ From this it also follows that

In general, if we set
$$\mathbf{u}_n = \begin{bmatrix} t_{n+1} \\ f_n \end{bmatrix}$$
 we have the *recursive relation*
$$\begin{bmatrix} f_{n+2} \\ f_{n+1} \end{bmatrix} = \boxed{\mathbf{u}_{n+1} = A\mathbf{u}_n} = \underbrace{\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}}_{A} \begin{bmatrix} f_{n+1} \\ f_n \end{bmatrix} \qquad \mathbf{u}_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$
(1)

We can also solve (1) explicitly and produce the solution in terms of the powers of the matrix A. That is

$$\mathbf{u}_n = A^n \mathbf{u}_0 \qquad \mathbf{u}_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}. \tag{2}$$

- Notice that (1) gives us the 'transition' (relation) between consecutive Fibonacci's numbers.
- More specifically, the equation $\mathbf{u}_{n+1} = A\mathbf{u}_n$ for $n \ge 0$ encodes the relation $f_{n+2} = f_{n+1} + f_n$ (the second relation encoded is the tautology $f_{n+1} = f_{n+1}$).

Notice that (2) gives us a way to calculate \mathbf{u}_n (that is f_n and f_{n+1}) from \mathbf{u}_0 (that is f_0 and f_1) by means of the equation $\mathbf{u}_n = A^n \mathbf{u}_0$.

Let us compute the eigenvalues and eigenvectors of the matrix Aintroduced above. Despite the fact that A is rather simple, the eigenvalues and the eigenvectors of A are not 'nice' at all! The characteristic polynomial of A is

$$\det \begin{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{bmatrix} = \det \begin{bmatrix} 1 - \lambda & 1 \\ 1 & -\lambda \end{bmatrix} = (1 - \lambda)(-\lambda) - 1 = \lambda^2 - \lambda - 1.$$

Hence we obtain the following eigenvectors

$$\lambda^2 - \lambda - 1 = 0$$
 \iff $\lambda_{1,2} = \frac{1 \pm \sqrt{5}}{2}.$

http://www.ms.uky.edu/~ma138

Lectures 26 & 27

 $\lambda_1 = \frac{1+\sqrt{5}}{2}$. In order to find (one of) the eigenvector(s) **v**₁ associated to λ_1 we need to solve the following system of equations

$$A\mathbf{v}_1 = \lambda_1 \mathbf{v}_1 \qquad \Longleftrightarrow \qquad (A - \lambda_1 l_2)\mathbf{v}_1 = \mathbf{0}$$

That is we need to find the solutions of

http://www.ms.uky.edu/~ma138

http://www.ms.uky.edu/~ma138

Lectures 26 & 27

Lectures 26 & 27

$$\underbrace{\left[\begin{array}{cc} 1-\frac{1+\sqrt{5}}{2} & 1 \\ 1 & -\frac{1+\sqrt{5}}{2} \end{array}\right]}_{A-\lambda_1 t_2} \underbrace{\left[\begin{array}{c} a \\ b \\ v_1 \end{array}\right]}_{\mathbf{v}_1} = \left[\begin{array}{c} 0 \\ 0 \end{array}\right].$$

Since we are subtracting one of the two values that make the matrix A singular, we have that the system of two linear equations in a and b reduces to the single equation $\sigma - \frac{1+\sqrt{5}}{2}b = 0.$

If we set b = 1 then $a = \frac{1 + \sqrt{5}}{2}$. Hence we get the eigen pair

$$\lambda_1 = \frac{1 + \sqrt{5}}{2}$$
 $v_1 = \begin{bmatrix} \frac{1 + \sqrt{5}}{2} \\ \vdots \end{bmatrix}$

 $\sum_{\lambda_2} = \frac{1-\sqrt{5}}{2}$ In order to find (one of) the eigenvector(s) \mathbf{v}_2 associated to λ_2 we need to solve the following system of equations

$$A\mathbf{v}_2 = \lambda_2 \mathbf{v}_2 \quad \iff \quad (A - \lambda_2 I_2)\mathbf{v}_2 = \mathbf{0}.$$

That is we need to find the solutions of

$$\underbrace{\left[\begin{array}{ccc} 1-\frac{1-\sqrt{5}}{2} & 1\\ 1 & -\frac{1-\sqrt{5}}{2} \end{array}\right]}_{A-\lambda_2 b_2}\underbrace{\left[\begin{array}{c} c\\ d \end{array}\right]}_{\mathbf{v}_2} = \left[\begin{array}{c} 0\\ 0 \end{array}\right].$$

Since we are subtracting the other of the two values that make the matrix A singular, we have that the system of two linear equations in a and b reduces to the single equation $c - \frac{1-\sqrt{5}}{2}d = 0$.

If we set d=1 then $c=rac{1-\sqrt{5}}{2}.$ Hence we get the eigen pair

$$=\frac{1-\sqrt{5}}{2}$$
 $v_2 = \begin{bmatrix} \frac{1-\sqrt{5}}{2} \\ 1 \end{bmatrix}$

http://www.ms.uky.edu/~ma138

Lectures 26 & 27

Let us now rewrite the vector un as a linear combination of the eigenvectors \mathbf{v}_1 and \mathbf{v}_2 .

That is we are seeking values c_1 and c_2 such that $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 = \mathbf{u}_0$

This system of linear equations leads to the solutions $c_1 = 1/\sqrt{5}$ and $c_2 = -1/\sqrt{5}$. That is

 $\mathbf{u}_0 = \frac{1}{\sqrt{5}} \mathbf{v}_1 - \frac{1}{\sqrt{5}} \mathbf{v}_2.$

Hence the relation $\mathbf{u}_n = A^n \mathbf{u}_0$ translates into the following

$$\begin{split} & u_n - A^n \left(\frac{1}{\sqrt{5}} v_1 - \frac{1}{\sqrt{5}} v_2 \right) \quad \Longleftrightarrow \quad u_n - \frac{1}{\sqrt{5}} A^n v_n - \frac{1}{\sqrt{5}} A^n v_2 \quad \Longleftrightarrow \quad u_n - \frac{1}{\sqrt{5}} A^n v_1 - \frac{1}{\sqrt{5}} A^n v_2 \\ & \Longrightarrow \quad \left[\begin{array}{c} \ell_{n+1} \\ \ell_n \end{array} \right] - \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n \left[\begin{array}{c} \frac{1 + \sqrt{5}}{2} \\ 1 \end{array} \right] - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n \left[\begin{array}{c} \frac{1 - \sqrt{5}}{2} \\ 1 \end{array} \right] \end{split}$$

In other words we have

$$\mathbf{u}_{n} = A^{n}\mathbf{u}_{0} = A^{n}(c_{1}\mathbf{v}_{1} + c_{2}\mathbf{v}_{2}) = c_{1}A^{n}\mathbf{v}_{1} + c_{2}A^{n}\mathbf{v}_{2} = c_{1}\lambda_{1}^{n}\mathbf{v}_{1} + c_{2}\lambda_{2}^{n}\mathbf{v}_{2}$$

The above matrix equation translates into the following two (consistent) expressions

$$f_{n+1} = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \qquad \text{and} \qquad \left| f_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n \right|^{n+1}$$

 $\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)$

0.4472

1.1707 3

1.8943

1 0.7235

2

4 3.0649

5

6 8.0239

7 12.9826

8 21.0059

0 33.9876 f_{n}

1

1

2

5 4.9591

8

13 21

34

http://www.ms.uky.edu/~ma138	http://www.ms.uky.edu/*ma138
Lectures 26 & 27	Lectures 26 & 27
00000000000000	000000000000000000000000000000000000000
Observe that the eigenvalue $\lambda_1 = (1 + \sqrt{5})/2 \approx 1.618$ (the largest, or dominant, eigenvalue) and the eigenvalue $\lambda_2 = (1 - \sqrt{5})/2 \approx -0.618$.	Let us check the above result in the chart below
,	Let us check the above result in the chart below
Hence $\lambda_2^n \to 0$ (in an oscillatory fashion) as $n \to \infty$. Thus we conclude	

that (for *n* sufficiently large) $f_n = \text{closest integer to } \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n$

The eigenvalue $\lambda_1 = (1 + \sqrt{5})/2$ is also called the **golden ratio**.

http://www.ms.uky.edu/~ma138

Lectures 26 & 27

http://www.ms.uky.edu/~ma138 Lectures 26 & 27

Example 3 A Population Model

	weekly basis. Say
If we analyze our description of the Fibonacci's numbers, we realize that	Weekly Dasis. Jay
we had a matrix A that was giving us a transition between a set/state	J_t = number of juveniles at week t A_t = number of adults at week
$\mathbf{u}_n = \begin{bmatrix} f_{n+1} \\ f_n \end{bmatrix}$ to the next set/state $\mathbf{u}_{n+1} = \begin{bmatrix} f_{n+2} \\ f_{n+1} \end{bmatrix}$. Thus, what we did	The relation between the population during two consecutive weeks can reasonably be described as follows
for the Fibonacci's numbers can be applied to describe the dynamics of a population that have a finite number (not necessarily two) of stages in life.	$J_{t+1} = J_t - mJ_t - gJ_t + fA_t, \qquad ($
	where the term " $-mJ_t$ " accounts for the fraction of juveniles that dies,
Suppose that we consider an hypothetical animal that has <i>two life stages</i> : juvenile adult.	the term " $-gJ_t$ " accounts for the fraction of juveniles that becomes adu and the term " $+fA_t$ " accounts for the newborns;
	$A_{t+1} = A_t - \mu A_t + g J_t, $
	where the term " $-\mu A_t$ " accounts for the fraction of adults that dies and
	the term " $+gJ_t$ " accounts for the fraction of juveniles that becomes adu
http://www.ms.uky.edu/"ma138	http://www.ms.uky.edu/~ma138
Lectures 26 & 27	Lectures 26 & 27
Observe that m, g, f, μ are numbers that denote weekly rates, which we	000000000
accurate to be constant for each neried. We can supress supress the	(Numerical) Example
assume to be constant for each period. We can express express the	(Numerical) Example
relations described above in matrix form as	(Numerical) Example Suppose that $g = m = 0.5$, $f = 2$, and $\mu = 0.9$. Hence (5) becomes
relations described above in matrix form as $ \begin{bmatrix} J_{t+1} \\ A_{t+1} \end{bmatrix} = \begin{bmatrix} 1 - m - g & f \\ g & 1 - \mu \end{bmatrix} \begin{bmatrix} J_t \\ A_t \end{bmatrix} $ (5)	
relations described above in matrix form as $ \begin{bmatrix} J_{t+1} \\ A_{t+1} \end{bmatrix} = \begin{bmatrix} 1 - m - g & f \\ g & 1 - \mu \end{bmatrix} \begin{bmatrix} J_t \\ A_t \end{bmatrix} $ (5)	Suppose that $g = m = 0.5$, $f = 2$, and $\mu = 0.9$. Hence (5) becomes
relations described above in matrix form as $\begin{bmatrix} J_{t+1} \\ A_{t+1} \end{bmatrix} = \begin{bmatrix} 1 - m - g & f \\ g & 1 - \mu \end{bmatrix} \begin{bmatrix} J_t \\ A_t \end{bmatrix}$ If we define the vector $\mathbf{u}_t = \begin{bmatrix} J_t \\ A_t \end{bmatrix}$ for any integer $t \ge 0$ then we can rewrite the above expression in the following recursive way	Suppose that $g = m = 0.5$, $f = 2$, and $\mu = 0.9$. Hence (5) becomes $\mathbf{u}_{r+1} = \begin{bmatrix} 0 & 2\\ 0.5 & 0.1 \end{bmatrix} \mathbf{u}_{r}.$
relations described above in matrix form as $ \begin{bmatrix} J_{t+1} \\ A_{t+1} \end{bmatrix} = \begin{bmatrix} 1 - m - g & f \\ g & 1 - \mu \end{bmatrix} \begin{bmatrix} J_t \\ A_t \end{bmatrix} $ (5) If we define the vector $\mathbf{u}_t = \begin{bmatrix} J_t \\ A_t \end{bmatrix}$ for any integer $t \ge 0$ then we can rewrite the above expression in the following recursive way $\mathbf{u}_{t+1} = A\mathbf{u}_t$ with $\mathbf{u}_0 = \begin{bmatrix} J_0 \\ A_0 \end{bmatrix}$:	Suppose that $g = m = 0.5$, $f = 2$, and $\mu = 0.9$. Hence (5) becomes $\mathbf{u}_{t+1} = \begin{bmatrix} 0 & 2 \\ 0.5 & 0.1 \end{bmatrix} \mathbf{u}_t$. We can easily check that the eigen pairs are $\lambda_1 = 1.051 \iff \mathbf{v}_1 = \begin{bmatrix} 1.9029 \\ 1 \end{bmatrix} \lambda_2 = -0.951 \iff \mathbf{v}_2 = \begin{bmatrix} -2.10 \\ 1 \end{bmatrix}$ As we discussed earlier, the general solution to our problem is
relations described above in matrix form as $ \begin{bmatrix} J_{t+1} \\ A_{t+1} \end{bmatrix} = \begin{bmatrix} 1 - m - g & f \\ g & 1 - \mu \end{bmatrix} \begin{bmatrix} J_t \\ A_t \end{bmatrix} $ (5) If we define the vector $\mathbf{u}_t = \begin{bmatrix} J_t \\ A_t \end{bmatrix}$ for any integer $t \ge 0$ then we can rewrite the above expression in the following recursive way	Suppose that $g = m = 0.5$, $f = 2$, and $\mu = 0.9$. Hence (5) becomes $\mathbf{u}_{t+1} = \begin{bmatrix} 0 & 2 \\ 0.5 & 0.1 \end{bmatrix} \mathbf{u}_t$. We can easily check that the eigen pairs are $\lambda_1 = 1.051 \iff \mathbf{v}_1 = \begin{bmatrix} 1.9029 \\ 1 \end{bmatrix} \lambda_2 = -0.951 \iff \mathbf{v}_2 = \begin{bmatrix} -2.10 \\ 1 \end{bmatrix}$ As we discussed earlier, the general solution to our problem is
relations described above in matrix form as $ \begin{bmatrix} J_{t+1} \\ A_{t+1} \end{bmatrix} = \begin{bmatrix} 1 - m - g & f \\ g & 1 - \mu \end{bmatrix} \begin{bmatrix} J_t \\ A_t \end{bmatrix} $ (5) If we define the vector $\mathbf{u}_t = \begin{bmatrix} J_t \\ A_t \end{bmatrix}$ for any integer $t \ge 0$ then we can rewrite the above expression in the following recursive way $\mathbf{u}_{t+1} = A\mathbf{u}_t$ with $\mathbf{u}_0 = \begin{bmatrix} J_0 \\ A_0 \end{bmatrix}$; in an explicit form we have $\mathbf{u}_t = A^t\mathbf{u}_0$ with $\mathbf{u}_0 = \begin{bmatrix} J_0 \\ A_0 \end{bmatrix}$.	Suppose that $g = m = 0.5$, $f = 2$, and $\mu = 0.9$. Hence (5) becomes $\mathbf{u}_{t+1} = \begin{bmatrix} 0 & 2 \\ 0.5 & 0.1 \end{bmatrix} \mathbf{u}_t.$ We can easily check that the eigen pairs are $\lambda_1 = 1.051 \rightsquigarrow \mathbf{v}_1 = \begin{bmatrix} 1.9029 \\ 1 \end{bmatrix} \lambda_2 = -0.951 \rightsquigarrow \mathbf{v}_2 = \begin{bmatrix} -2.10 \\ 1 \end{bmatrix}$
relations described above in matrix form as $\begin{bmatrix} J_{t+1} \\ A_{t+1} \end{bmatrix} = \begin{bmatrix} 1 - m - g & f \\ g & 1 - \mu \end{bmatrix} \begin{bmatrix} J_t \\ A_t \end{bmatrix}.$ (5) If we define the vector $\mathbf{u}_t = \begin{bmatrix} J_t \\ A_t \end{bmatrix}$ for any integer $t \ge 0$ then we can rewrite the above expression in the following recursive way $\mathbf{u}_{t+1} = A\mathbf{u}_t$ with $\mathbf{u}_0 = \begin{bmatrix} J_0 \\ A_0 \end{bmatrix}$; in an explicit form we have	Suppose that $g = m = 0.5$, $f = 2$, and $\mu = 0.9$. Hence (5) becomes $\mathbf{u}_{t+1} = \begin{bmatrix} 0 & 2\\ 0.5 & 0.1 \end{bmatrix} \mathbf{u}_t.$ We can easily check that the eigen pairs are $\lambda_1 = 1.051 \dots \mathbf{v}_1 = \begin{bmatrix} 1.9029\\ 1 \end{bmatrix} \qquad \lambda_2 = -0.951 \dots \mathbf{v}_2 = \begin{bmatrix} -2.10\\ 1 \end{bmatrix}$ As we discussed earlier, the general solution to our problem is $\mathbf{u}_t = \begin{bmatrix} J_t\\ A_t \end{bmatrix} = A^t \mathbf{u}_0 = A^t (c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2) = c_1 A^t \mathbf{v}_1 + c_2 A^t \mathbf{v}_2 = c_1 \lambda_1^t \mathbf{v}_1 + c_2 \lambda_2^t \mathbf{v}_2$
relations described above in matrix form as $\begin{bmatrix} J_{t+1} \\ A_{t+1} \end{bmatrix} = \begin{bmatrix} 1 - m - g & f \\ g & 1 - \mu \end{bmatrix} \begin{bmatrix} J_t \\ A_t \end{bmatrix}.$ (5) If we define the vector $\mathbf{u}_t = \begin{bmatrix} J_t \\ A_t \end{bmatrix}$ for any integer $t \ge 0$ then we can rewrite the above expression in the following recursive way $\mathbf{u}_{t+1} = A\mathbf{u}_t$ with $\mathbf{u}_0 = \begin{bmatrix} J_0 \\ A_0 \end{bmatrix}$; in an explicit form we have $\mathbf{u}_t = A^t\mathbf{u}_0$ with $\mathbf{u}_0 = \begin{bmatrix} J_0 \\ A_0 \end{bmatrix}$. Since we are interested in the dynamics of this population we have another	Suppose that $g = m = 0.5$, $f = 2$, and $\mu = 0.9$. Hence (5) becomes $\mathbf{u}_{t+1} = \begin{bmatrix} 0 & 2\\ 0.5 & 0.1 \end{bmatrix} \mathbf{u}_t$. We can easily check that the eigen pairs are $\lambda_1 = 1.051 \cdots \mathbf{v}_1 = \begin{bmatrix} 1.9029\\ 1 \end{bmatrix} \lambda_2 = -0.951 \cdots \mathbf{v}_2 = \begin{bmatrix} -2.10\\ 1 \end{bmatrix}$ As we discussed earlier, the general solution to our problem is $\mathbf{u}_t = \begin{bmatrix} J_t\\ A_t \end{bmatrix} = A^t \mathbf{u}_0 = A^t(c_1\mathbf{v}_1 + c_2\mathbf{v}_2) = c_1A^t\mathbf{v}_1 + c_2A^t\mathbf{v}_2 = c_1\lambda_1^t\mathbf{v}_1 + c_2\lambda_2^t\mathbf{v}_2$ where c_1 and c_2 are the values that allow us to rewrite the vector \mathbf{u}_0 as

Suppose that we count the number of members of this population on a

ek t.

$$J_{t+1} = J_t - mJ_t - gJ_t + fA_t, \tag{3}$$

$$A_{t+1} = A_t - \mu A_t + g J_t, \tag{4}$$

000000

$$\lambda_1 = 1.051 \quad \nleftrightarrow \quad \mathbf{v}_1 = \left[\begin{array}{cc} 1.9029\\ 1 \end{array} \right] \qquad \lambda_2 = -0.951 \quad \bigstar \quad \mathbf{v}_2 = \left[\begin{array}{cc} -2.102\\ 1 \end{array} \right]$$

$$\mathbf{u}_t = \begin{bmatrix} J_t \\ A_t \end{bmatrix} = A^t \mathbf{u}_0 = A^t (c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2) = c_1 A^t \mathbf{v}_1 + c_2 A^t \mathbf{v}_2 = c_1 \lambda_1^t \mathbf{v}_1 + c_2 \lambda_2^t \mathbf{v}_2,$$

Lectures 26 & 27

Lectures 26 & 21

As it happened in the case of the Fibonacci's numbers, one of the eigenvalues is dominant. Namely, $\lambda_1 = 1.051 > -0.951 = \lambda_2$. Thus we can rewrite our solution as

$$\mathbf{u}_{t} = \begin{bmatrix} J_{t} \\ A_{t} \end{bmatrix} = \lambda_{1}^{t} \left(c_{1} \mathbf{v}_{1} + c_{2} \left(\frac{\lambda_{2}}{\lambda_{1}} \right)^{t} \mathbf{v}_{2} \right) \underset{\text{as } t \to \infty}{\approx} \lambda_{1}^{t} c_{1} \mathbf{v}_{1}.$$

It makes sense to call the dominant eigenvalue λ_1 the growth rate ($\lambda_1 = 1.051 \rightsquigarrow$ growth rate = 5.1%) and the corresponding eigenvector v_1 the stable age structure.

Also observe that the second term in the general solution leads to an oscillating (decaying) behavior caused by the factor $(-0.951)^t$.

As we observed earlier in the long run we have

$$\mathbf{u}_t = \begin{bmatrix} J_t \\ A_t \end{bmatrix} \approx c_1 (1.051)^t \begin{bmatrix} 1.9029 \\ 1 \end{bmatrix}$$

http://www.ms.uky.edu/~ma13 Lectures 26 & 27 This implies that the ratio $\frac{J_t}{A_t}=\frac{c_1(1.051)^t1.9029}{c_1(1.051)^t}=1.9029$ is constant. This means that in the long run the population will consist of 65.6% of juveniles and 34.4% of adults¹. In other words there will be about 1.9 juveniles for every adult.

Remark. The above population model is an example of a *Leslie matrix*. You can read more about Leslie matrices (even for populations with more than two life stages!) on pages 459-464 and 483-486 of our textbook *Calculus for Biology and Medicine* by Claudia Neuhauser. The example is taken from the book *Mathematical Methods in Biology* by J.D. Logan and W. Wolensky (pages 103-105).

 $^{1}\mathrm{lf}$ x represents the percentage of juvenile then 100 – x represents the percentage of adults. Hence the equation (ratio) x/(100-x)=1.9029 gives the solution $x=190.29/2.9029\approx 65.6$ and 100 – $x\approx 34.4$.

http://www.ms.uky.edu/~ma138

ectures 26 & 27