MA 138 - Calculus 2 with Life Science Applications Linear Systems: Theory (Section 11.1)

Alberto Corso
〈alberto.corso@uky.edu〉
Department of Mathematics
University of Kentucky

Friday, April 14, 2017

Systems of Differential Equations

■ Suppose that we are given a set of variables $x_{1}, x_{2}, \ldots, x_{n}$, each depending on an independent variable, say, t, so that

$$
x_{1}=x_{1}(t), x_{2}=x_{2}(t), \ldots, x_{n}=x_{n}(t)
$$

- Suppose also that the dynamics of the variables are linked by n differential equations ($\equiv \mathrm{DEs}$) of the first-order; that is,

$$
\left\{\begin{aligned}
\frac{d x_{1}}{d t}= & g_{1}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right) \\
& \vdots \\
\frac{d x_{n}}{d t} & =g_{n}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right)
\end{aligned}\right.
$$

- This set of equations is called a system of differential equations.
- On the LHS are the derivatives of $x_{i}(t)$ with respect to t. On the RHS is a function g_{i} that depends on the variables $x_{1}, x_{2}, \ldots, x_{n}$ and on t.
http://www.ms.uky.edu/-ma138
Lecture 37

Direction Field of a System of 2 Autonomous DEs

- Review the notion of the direction field of a DE of the first order $d y / d x=f(x, y)$. We encountered this notion just before Section 8.2 (Handout; February 15, 2017).
- Consider, now a system of two autonomous differential equations

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=g_{1}(x, y) \\
\frac{d y}{d t}=g_{2}(x, y)
\end{array}\right.
$$

- Assuming that y is also a function of x and using the chain rule, we can eliminate t and obtain the DE

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{g_{2}(x, y)}{g_{1}(x, y)}
$$

of which we can plot the direction field.

Lecture 37

Example (Lotka-Volterra)

Consider the system of DEs $\quad \frac{d x}{d t}=x-4 x y \quad$ and $\quad \frac{d y}{d t}=2 x y-3 y$. The direction field of the differential equation $\frac{d y}{d x}=\frac{(2 x-3) y}{x(1-4 y)}$ has been produced with the SAGE commands in Chapter 8.

Notice that the trajectories are closed curves. Furthermore, they all seem to revolve around the point $P(3 / 2,1 / 4)$. This is the point where the factors $2 x-3$ and $1-4 y$ of $d y / d t$ and $d x / d t$, respectively, are both zero. http://www.ms.uky.edu/-ma138
Lecture 37

- We can write our inhomogeneous system of linear, first-order differential equations as follows

$$
\frac{d \mathbf{x}}{d t}=A(t) \mathbf{x}+\mathbf{f}(t)
$$

- We are mainly interested in the case when $\mathbf{f}(t)=\mathbf{0}$, that is,

$$
\frac{d \mathbf{x}}{d t}=A(t) \mathbf{x}
$$

an homogeneous system of linear, first-order differential equations.

- Finally, we will study the case in which $A(t)$ does not depend on t

$$
\frac{d \mathbf{x}}{d t}=A \mathbf{x}
$$

an homogeneous system of linear, first-order differential equations with constant coefficients.

Linear Systems of Differential Equations (11.1)

- We first look at the case when the g_{i} 's are linear functions in the variables $x_{1}, x_{2}, \ldots, x_{n}$ - that is,

$$
\left\{\begin{aligned}
& \frac{d x_{1}}{d t}=a_{11}(t) x_{1}+\ldots+a_{1 n}(t) x_{n}+f_{1}(t) \\
& \vdots \\
& \frac{d x_{n}}{d t}=a_{n 1}(t) x_{1}+\ldots+a_{n n}(t) x_{n}+f_{n}(t)
\end{aligned}\right.
$$

- We can write the linear system in matrix form as

$$
\frac{d}{d t}\left[\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right]=\left[\begin{array}{ccc}
a_{11}(t) & \ldots & a_{1 n}(t) \\
\vdots & & \vdots \\
a_{n 1}(t) & \ldots & a_{n n}(t)
\end{array}\right]\left[\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right]+\left[\begin{array}{c}
f_{1}(t) \\
\vdots \\
f_{n}(t)
\end{array}\right]
$$

and we call it an inhomogeneous system of linear, first-order differential equations.
http://www.ms.uky.edu/-ma138
Lecture 37

Example 1 (Problem \#8, Exam 3, Spring 2013)

(a) Verify that the functions $x(t)=e^{4 t}+5 e^{-t} \quad$ and $\quad y(t)=4 e^{4 t}-5 e^{-t}$ (whose graphs are given below) are solutions of the system of DEs

$$
\left\{\begin{array}{l}
\frac{d x}{d t}= \\
\frac{d y}{d t}=4 x+3 y
\end{array}\right.
$$

$$
\text { with } x(0)=6 \text { and } y(0)=-1
$$

(b) Rewrite the given system of DEs and its solutions in the form

system of differential equations

$$
\underbrace{\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] e^{4 t}+5\left[\begin{array}{l}
\gamma \\
\delta
\end{array}\right] e^{-t}}
$$

solutions
for appropriate choices of the constants $a, b, c, d, \alpha, \beta, \gamma$, and δ.
http://www.ms.uky.edu/-ma138
Lecture 37

Specific Solutions of a Linear System of DEs

- Consider the system $\frac{d \mathbf{x}}{d t}=A \mathbf{x}$.
- We claim that the vector-valued function

$$
\mathbf{x}(t)=\left[\begin{array}{l}
v_{1} e^{\lambda t} \\
v_{2} e^{\lambda t}
\end{array}\right]=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] e^{\lambda t}
$$

where λ, v_{1} and v_{2} are constants, is a solution of the given system of DEs, for an appropriate choice of values for λ, v_{1}, and v_{2}.

- More precisely, $\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ is an eigenvector of the matrix A corresponding to the eigenvalue λ of A.

http://www.ms.uky.edu/ ${ }^{\text {ºmal38 }}$

Lecture 37

The General Solution

Theorem

Let

$$
\frac{d \mathrm{x}}{d t}=A \mathrm{x}
$$

where A is a 2×2 matrix with two real and distinct eigenvalues λ_{1} and λ_{2} with corresponding eigenvectors \mathbf{v}_{1} and \mathbf{v}_{2}.

THEN

$$
x(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{v}_{2} e^{\lambda_{2} t}
$$

is the general solution of the given system of DEs.
The constants c_{1} and c_{2} depend on the initial condition.

The Superposition Principle

Principle

Suppose that

$$
\left[\begin{array}{l}
\frac{d x_{1}}{d t} \\
\frac{d x_{2}}{d t}
\end{array}\right]=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right] .
$$

If $\quad \mathbf{y}(t)=\left[\begin{array}{l}y_{1}(t) \\ y_{2}(t)\end{array}\right] \quad$ and $\quad \mathbf{z}(t)=\left[\begin{array}{l}z_{1}(t) \\ z_{2}(t)\end{array}\right]$
are solutions of the given system of DEs, THEN

$$
\mathbf{x}(t)=c_{1} \mathbf{y}(t)+c_{2} \mathbf{z}(t)
$$

is also a solution of the given system of DEs for any constants c_{1} and c_{2}.
http://www.ms.uky.edu/-ma138
Lecture 37

