MA 138 – Calculus 2 with Life Science Applications Nonlinear Autonomous Systems: Theory (Section 11.3)

Alberto Corso (alberto.corso@uky.edu) Department of Mathematics University of Kentucky Monday, April 24, 2017	$\begin{pmatrix} \frac{\partial \cdot x}{\partial t} &= f_2(x_1, x_2) \\ \text{where we assume that the functions } f_1(\mathbf{x}) : \mathbb{R}^2 \longrightarrow \mathbb{R} \text{ do not explicitly} \\ \text{depend on } t. \text{ We also no longer assume that the } f_1's \text{ are linear.} \\ \text{Such a system is called autonomous.} \\ \text{Using vector notation, we can write the system as } \frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}) \\ \text{where } \mathbf{x} = \mathbf{x}(t) = (x_1(t), x_2(t)) \text{ and } \mathbf{f}(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x})). \\ \text{An equilibrium or critical point, } \hat{\mathbf{x}}, \text{ of the above nonlinear system} \\ \text{write} \mathbf{f}(\mathbf{x}) = \mathbf{f}(\mathbf{x}) \\ \text{where } \mathbf{f}(\mathbf{x}$
	satisfies $f(\hat{x}) = 0$.
http://www.ms.uky.edu/"ma138	http://www.ms.uky.edu/"ma138
Lecture 41	Lecture 41
Example 1 Identify all the equilibrium points of the following nonlinear system $\begin{cases} \frac{dx}{dt} = x(5 - x - 6y) \\ \frac{dy}{dt} = y(1 - 5x) \end{cases}$	 Suppose that x̂ is a point equilibrium. Then, as in the case of one nonlinear equation (=Section 8.2), we look at what happens to a small perturbation of x̂. We perturb x̂; that is, we look at how x̂ + z changes under the dynamics described by our nonlinear system: ^d/_{dt}(x̂ + z) = ^d/_{dt}z = f(x̂ + z) The linearization of f(□) about x = x̂ is L(□) = f(x̂) + Df(x̂)(□ - x̂) = Df(x̂)(□ - x̂) where we used the fact that f(x̂) = 0. The matrix Df(x̂) is the Jacobi matrix of f(x) evaluated at x̂. If we approximate f(x̂ + z) by its linearization L(x̂ + z) = Df(x̂)z, then ^d/_{dt} = Df(x̂) z is the linear approximation of the dynamics of the perturbation z.
http://www.ms.uky.edu/~ma138	http://www.ms.uky.edu/~ma138
Lecture 41	Lecture 41

Analytical Approach

We consider a system of differential equations of the form

$$\begin{cases} \frac{dx_1}{dt} = f_1(x_1, x_2) \\ \frac{dx_2}{dt} = f_2(x_1, x_2) \end{cases}$$

 When we linearize a nonlinear system about an equilibrium, the matrix A is the Jacobi matrix evaluated at the equilibrium. To classify the equilibrium we can use the same classification scheme as in the linear case. We need to exclude, though, the following cases: at least one eigenvalue is equal to 0, the two eigenvalues are purely imaginary, and the voc eigenvalues are instra. An equilibrium point as described above is often called hyperbolic 	Hartman-Grobman Theorem The local phase portrait near a hyperbolic equilibrium point is "topologically equivalent ¹ " to the phase portrait of the linearization. In particular, the stability type of the equilibrium point is faithfully captured by the linearization.
 (this is an unfortunate name—it sounds like it should mean "saddle point"—but it has become standard!). The extension from the linear case to the nonlinear case is possible because of the following result: http://www.m.sky.obu/~ma138 testure 41 	¹ Intuitively, two phase portraits are topologically equivalent if one is a distorted version of the other: bending and wrapping are allowed, but not ripping, so closed orbits must remain closed, trajectories connecting saddle points must not be broken, etc. http://www.musky.edu/~ma188
 That is dx/dt = f(x) and dz/dt = Df(x)z behave similarly for x = x̂ + z with z close to 0. More precisely, we find the same classification scheme as in the linear case: The equilibrium x̂ is a node if both eigenvalues of Df(x̂) are real, distinct, nonzero, and of the same sign; x̂ is locally stable if the eigenvalues are negative and unstable if the eigenvalues are real and nonzero but have opposite signs. A saddle point is locally stable if the real parts of the eigenvalues are negative and unstable if unstable. The equilibrium x̂ is a spiral if both eigenvalues are complex conjugates with nonzero real parts. The spiral is locally stable if the real parts of the eigenvalues are positive. In the exceptional cases, we cannot determine the stability by linearization. 	The stability properties of a hyperbolic equilibrium $\hat{\mathbf{x}}$ can be summarized graphically in terms of the determinant and the trace of the Jacobi matrix $A = D\mathbf{f}(\hat{\mathbf{x}})$ in the trace-det plane: $\Delta = 0$ $det(A)$ unstable spirals $\Delta = 0$ $det(A)$ unstable spirals $\Delta = 0$ $det(A)$ de
http://www.ms.uky.edu/~ma138 Lecture 41	http://www.ms.uky.edu/*ma138 Eccture 41

• We now have a system of linear differential equations that is a good approximation, provided that z is sufficiently close to 0.

Γ

Hartman-Grobman Theorem

Example 1 (cont'd)

Linearize the nonlinear system of differential equations

$$\frac{dx}{dt} = x(5-x-6y)$$
$$\frac{dy}{dt} = y(1-5x)$$

at each equilibrium point

- $(\hat{x}_1, \hat{y}_1) = (0, 0);$
- $(\hat{x}_2, \hat{y}_2) = (5, 0);$
- $(\hat{x}_3, \hat{y}_3) = (0.2, 0.8).$

Classify the type of each equilibrium point.

http://www.ms.uky.edu/~ma138 Lecture 41

Example 2 (cont'd)

Suppose $c_1 = 2$, $c_2 = 10$, $m_1 = 1$, and $m_2 = 2$. Hence, after some algebra, the above system of nonlinear differential equations can be written as

$$\begin{cases} \frac{dp_1}{dt} = p_1 (1 - 2p_1) \\ \frac{dp_2}{dt} = p_2 (8 - 12p_1 - 10p_2) \end{cases}$$

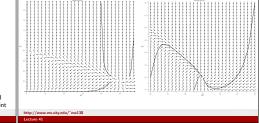
(a) There is only one equilibrium point (\$\heta_1, \$\heta_2\$) where both species are present. Identify that point and linearize the given system of differential equations at that point. Classify the type of equilibrium.

> Plot here the nullclines and the nontrivial equilibrium point

Example 2 (Problem #10, Exam #4, Spring 2013)

Suppose a *habitat* is divided up into *patches* and each patch can be occupied by at most one individual. If two species A and B live in this habitat, the growth of the population of A is controlled by the internal dynamics of the population growth of A and the interactions between A and B. The situation for B is similar.

Suppose the members of species A are able to outcompete members of species B, that is, the members of A are able to invade patches that are occupied by species B and displace the resident. If p_1 is the fraction of the sites occupied by A and p_2 is the fraction of the sites occupied by B, this situation is described by the differential equations


$$\frac{dp_1}{dt} = c_1 p_1 (1-p_1) - m_1 p_1 \qquad \qquad \frac{dp_2}{dt} = c_2 p_2 (1-p_1-p_2) - m_2 p_2 - c_1 p_1 p_2$$

where c_1, c_2, m_1 , and m_2 are the *colonization* and *mortality rates* of species A and B, respectively.

http://www.ms.uky.edu/~ma138 Lecture 41

Example 2 (cont'd)

(b) Choose the direction field that describes the system of nonlinear differential equations considered in (a).

http://www.ms.uky.edu/~ma138 Lecture 41

On the Exception to the Hartman-Grobman Thm

The following nonlinear systems of DEs

$$\begin{cases} \frac{dx}{dt} &= -\mathbf{y} + \mathbf{x}(x^2 + y^2) \\ \frac{dy}{dt} &= \mathbf{x} + \mathbf{y}(x^2 + y^2) \end{cases} \begin{cases} \frac{dx}{dt} &= -\mathbf{y} - \mathbf{x}(x^2 + y^2) \\ \frac{dy}{dt} &= \mathbf{x} - \mathbf{y}(x^2 + y^2) \end{cases}$$

have rather different phase portraits (see below). However, they have the

same linearization at the equilibrium (0,0), with eigenvalues $\pm i$.

