MA 138 - Calculus 2 with Life Science Applications Nonlinear Autonomous Systems: Theory (Section 11.3)

Alberto Corso
〈alberto.corso@uky.edu〉
Department of Mathematics
University of Kentucky

Wednesday, April 26, 2017

Let us assume that x_{1} and x_{2} are nonnegative; this restricts the discussion to the first quadrant of the $x_{1} x_{2}$-plane. The two curves in the picture on the right divide the first quadrant into four regions, and we label each region according to whether $d x_{i} / d t$ (that is, f_{i}) is positive or negative.

The point where both null clines in the picture intersect is a point equilibrium or critical point, which we call $\widehat{\mathbf{x}}$. We can use the graph to determine the signs of the entries in the Jacobi matrix

$$
D \mathbf{f}(\widehat{\mathbf{x}})=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \quad \text { where } \quad a_{i j}=\frac{\partial f_{i}}{\partial x_{j}}(\widehat{\mathbf{x}})
$$

Clearly, the entry a_{11} is the effect of a change in f_{1} in the x_{1}-direction when we keep x_{2} fixed. To determine the sign of a_{11}, follow the horizontal arrow in the picture: The arrow goes from a region where f_{1} is positive to a region where f_{1} is negative, implying that f_{1} is decreasing and hence $a_{11}<0$.
http://www.ms.uky.edu/-ma138
Lecture 42

Graphical Approach for 2×2 Systems

■ We consider a system of two autonomous DEs of the form

$$
\left\{\begin{array}{l}
\frac{d x_{1}}{d t}=f_{1}\left(x_{1}, x_{2}\right) \\
\frac{d x_{2}}{d t}=f_{2}\left(x_{1}, x_{2}\right)
\end{array}\right.
$$

i.e., we assume that the functions $f_{i}(\mathbf{x}): \mathbb{R}^{2} \longrightarrow \mathbb{R}$ do not explicitly depend on t.

- Using vector notation, we can write the system as $\frac{d \mathbf{x}}{d t}=\mathbf{f}(\mathbf{x})$ where $\mathbf{x}=\mathbf{x}(t)=\left(x_{1}(t), x_{2}(t)\right)$ and $\mathbf{f}(\mathbf{x})=\left(f_{1}(\mathbf{x}), f_{2}(\mathbf{x})\right)$.
- The curves

$$
f_{1}\left(x_{1}, x_{2}\right)=0 \quad f_{2}\left(x_{1}, x_{2}\right)=0 .
$$

are called zero isoclines or null clines, and they represent the points in the $x_{1} x_{2}$-plane where the growth rates of the respective quantities
http://www.ms.uky.edu/-ma138
Lecture 42

The signs of the other three entries are found similarly, and we obtain

$$
D f(\widehat{\mathbf{x}})=\left[\begin{array}{ll}
- & + \\
- & -
\end{array}\right]
$$

Thus, the trace of $\operatorname{Df}(\hat{\mathbf{x}})$ is negative and the determinant of $D \mathbf{f}(\hat{\mathbf{x}})$ is positive.
We conclude that both eigenvalues have negative real parts and, therefore, that the equilibrium is locally stable.

http://www.ms.uky.edu/-ma138
Lecture 42

Example 1 (Problem \#9, Exam 4, Spring 2012)

Consider the system of autonomous DEs

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=f(x, y) \\
\frac{d y}{d t}=g(x, y)
\end{array}\right.
$$

The zero isoclines (or nullclines) for this system of DEs are drawn in the picture on the side.

Example 2 (Example \#3, Section 11.3, p. 628)

Use the graphical approach to analyze the equilibrium $(3,2)$ of

$$
\left\{\begin{array}{l}
\frac{d x_{1}}{d t}=5-x_{1}-x_{1} x_{2}+2 x_{2} \\
\frac{d x_{2}}{d t}=x_{1} x_{2}-3 x_{2}
\end{array}\right.
$$

