
Direction fields of differential equations...with SAGE

Many differential equations cannot be solved conveniently by analytical methods, so it is important
to consider what qualitative information can be obtained about their solutions without actually
solving the equations.

A direction field (or slope field) is a graphical representation of the solutions of a first-order
differential equation of the form

dy

dx
= f(x, y).

Imagine that you are standing at a point P (α, β) in the xy-plane and that the above differential
equation determines your future location. Where should you go next? You move along a curve
whose tangent line at the point P (α, β) has slope dy/dx|P = f(α, β).

We (or, better, a computer) can construct a direction field (or slope field) by evaluating the
function f(x, y) at each point of a rectangular grid consisting of at least a few hundred points.
Then, at each point of the grid, a short line segment is drawn whose slope is the value of f at
that point. Thus each line segment is tangent to the graph of the solution passing through that
point. A direction field drawn on a fairly fine grid gives a good picture of the overall behavior of
solutions of a given differential equation.

The graph of a solution to the given differential equation is a curve in the xy-plane. It is often
useful to regard this curve as the path, or trajectory traversed by a moving particle. The xy-
plane is called the phase plane and a representative set of trajectories is referred to as a phase
portrait.

SAGE is a free open-source mathematics software system. You can download this software or use
it online at the following address

www.sagemath.org/

To try sage online follow the appropriate links at the above address and select one of the OpenID
providers (say, for example, Google or Yahoo).

It is easy to plot direction (slope) fields of a differential equation using SAGE. For this we use the
command

plot_slope_field

The picture below shows you a snapshot of a session in SAGE with the direction field of the
differential equation dy/dx = sin(x) sin(y).
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Example 1: Consider the differential equation

dy

dx
= x2y2  

∫
dy

y2
=

∫
x2 dx.

It is easy to check that the general solution to this differential equation is given by the function

y =
−3

x3 + C
,

where C is a constant. If we make the constant equal to 6,−3, and 0.3, respectively, we obtain
the three solutions below

y1 =
−3

x3 + 6
y2 =

−3

x3 − 3
y3 =

−3

x3 + 0.3

which correspond to the initial conditions

y1(0) = −0.5 y2(0) = 1 y3(0) = −10

respectively.

Below are the commands to plot the direction field of the given differential equation as well as the
graphs of those three particular solutions.

x,y=var(’x,y’)

v=plot_slope_field(x^2*y^2,(x,-5,5),(y,-10,10),headaxislength=3, headlength=3)

a=6

b=-3

c=0.3

d1=plot(-3/(x^3+a),(x,0,4))

d2=plot(-3/(x^3+b),(x,0,1.4))

d3=plot(-3/(x^3+c),(x,0,4))

show(v+d1+d2+d3)

Phase Portrait 1: direction field of dy/dy = x2y2 and some particular solutions.

Example 2: Consider the differential equation

dy

dx
= y2 − 4  

∫
dy

(y − 2)(y + 2)
=

∫
dx.
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Using the method of partial fractions, integration and a few algebraic manipulations, we see that
the general solution to this differential equation is given by the function

y = 2 · 1 + Ce4x

1− Ce4x
= 2 · e

−4x + C

e−4x − C
,

where C is a constant. If we make the constant equal to 2,−1, and 0.1, respectively, we obtain
the three solutions

y1 = 2 · 1 + 2e4x

1− 2e4x
y2 = 2 · 1− e4x

1 + e4x
y3 = 2 · 1 + 0.1e4x

1− 0.1e4x
,

which correspond to the initial conditions

y1(0) = −6 y2(0) = 0 y3(0) =
22

9
≈ 2.4,

respectively.

The commands to plot the direction field of the given differential equation as well as the graphs
of those three particular solutions are below. Please notice the long term behavior of those three
solutions!

x,y=var(’x,y’)

v=plot_slope_field((y^2-4),(x,-5,5),(y,-5,5),headaxislength=3, headlength=3)

a=2

b=-1

c=0.1

d1=plot(2*(1+a*e^(4*x))/(1-a*e^(4*x)),(x,0,4))

d2=plot(2*(1+b*e^(4*x))/(1-b*e^(4*x)),(x,0,4))

d3=plot(2*(1+c*e^(4*x))/(1-c*e^(4*x)),(x,0,0.4))

show(v+d1+d2+d3)

Phase Portrait 2: direction field of dy/dy = y2 − 4 and some particular solutions.

Remark: If you compute the limit as x tends to infinity of y = 2 · 1 + Ce4x

1− Ce4x
= 2 · e

−4x + C

e−4x − C
you see that for any choice of C the limit is −2. This seems inconsistent with the behavior of y3 in
the phase portrait above. (It seems very different from the behavior of y1 and y2.) This difference
is due to the fact that

lim
x→ln(10)/4

2 · 1 + 0.1e4x

1− 0.1e4x
= +∞,

that is, the solution y3 has a discontinuity at x = ln(10)/4.
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Example 3 (Logistic growth model): A biological population with plenty of food, space to
grow, and no threat from predators, tends to grow at a rate that is proportional to the population
– that is, in each unit of time, a certain percentage of the individuals produce new individuals. If
reproduction takes place more or less continuously, then this growth rate is represented by

dN

dt
= rN,

where N = N(t) is the population as a function of time t, and r is the proportionality constant.
We know that all solutions of this natural-growth equation have the form

N(t) = N0e
rt,

where N0 is the population at time t = 0.

In short, unconstrained natural growth is exponential growth. However, we may account for the
growth rate declining to 0 by including a factor 1 − N/K in the model, where K is a positive
constant. The factor 1 −N/K is close to 1 (that is, has no effect) when N is much smaller than
K, and is close to 0 when N is close to K. The resulting model,

dN

dt
= rN

(
1− N

K

)
with N(0) = N0

is called the logistic growth model or the Verhulst model1.

To obtain the solution to this differential equation we proceed as follows:

dN

dt
= rN

(
1− N

K

)
 

1

N

(
1− N

K

) dN = r dt  
K

N(K −N)
dN = r dt

Using the method of partial fractions, integration and a few algebraic manipulations, we obtain
that the general solution to this differential equation is given by the function∫(

1

N
+

1

K −N

)
dN =

∫
r dt  ln(N)−ln(K−N) = rt+C  

N(t)

K −N(t)
= Aert,

where C and A = eC are constants. To determine the value of the constant A we now use the
initial condition N(0) = N0. We find that A = N0/(K − N0). Thus our solution (after a few
algebraic manipulations) looks like

N(t)

K −N(t)
=

N0

K −N0
ert  

K −N(t)

N(t)
=
K −N0

N0ert
 K−N(t) = N(t)

(
K

N0
−1

)
e−rt

 N(t) =
K

1 +

(
K

N0
− 1

)
e−rt

Observe that lim
t→∞

N(t) = K. This justifies the fact that the constant K is dubbed carrying

capacity.

Here is a numerical example with r = 0.2 (that is we assume a 20% growth rate) and K = 10.

dN

dt
= 0.2N (1−N/10)  N(t) =

10

1 + (10/N0 − 1)e−0.2t

1The word “logistic” has no particular meaning in this context, except that it is commonly accepted. The second
name honors Pierre François Verhulst (1804–1849), a Belgian mathematician who studied this idea in the 19th
century. Using data from the first five U.S. censuses, he made a prediction in 1840 of the U.S. population in 1940 –
and was off by less than 1%.
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The direction field of the given differential equation as well as the graphs of particular solutions
are below. Please notice the long term behavior of those solutions!

Phase Portrait 3: direction field of dN/dt = 0.2N (1−N/10) and some particular solutions.

Example 4 (Lotka-Volterra predator-prey model): We give an example of a class of differ-
ential equations that describes the interaction of two species in a way in which one species (the
predator) preys on the other species (the prey), while the prey lives on a different source of
food. The population distributions tend to show periodic oscillations. We stress upfront that a
model involving only two species cannot fully describe the complex relationship among species
that actually occur in nature. Nevertheless, the study of simple models is the first step toward an
understanding of more complicated phenomena.

When the prey population increases in size, the
predatory species obtains a larger food base.
Hence, with a certain time delay it will also be-
come more numerous. As a consequence, the
growing pressure for food will reduce the prey
population. After a while food becomes rare
for the predator species so that its propagation
is inhibited. The size of the predator popu-
lation will decline. The new phase favors the
prey population. Slowly it will grow again, and
the pattern in changing population sizes may
repeat. When conditions remain the same, the
process continues in cycles.

The figures on the side and below illustrate such
a cyclical dynamics.

Legend: Fluctuation of population size of Paramecium aurelia

which feeds upon Saccharomyces exiguus.

Legend:

(a) Fluctuations in the number of pelts sold by the Hudson Bay Company.

(b) Detail of the 30-year period starting in 1875.

(c) Phase plane plot of the data in (b).
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A (highly simplified) model for the predator-prey interaction can be summarized as follows:
change in
the number
of prey

 =


natural
increase
in prey

 −


destruction
of prey by
predator




change in
the number
of predator

 =


increase in
predator resulting
from devouring prey

 −


natural
loss in
predator


We now translate this model into differential equations. Let x = x(t) be the number of prey
individuals and y = y(t) the number of predator individuals at time instant t. We assume that x
and y are differentiable functions of t.

The key assumptions in the Lotka-Volterra2,3 model are:

� the birth rate of the prey species is likely to be proportional to x, that is, equal to ax with
a certain constant a > 0;

� the destruction rate depends on x and on y. The more prey individuals are available, the
easier it is to catch them, and the more predator individuals are around, the more stomachs
have to be fed. It is reasonable to assume that the destruction rate is proportional to x and
to y, that is, equal to bxy with a certain constant b > 0.

� the birth rate of the predator population depends on food supply as well as on its present
size. We may assume that the birth rate is proportional to x and to y, that is, equal to cxy
with a certain constant c > 0.

� the death rate of the predator species is likely to be proportional to y, that is, equal to dy
with a certain d > 0.

Under these simplifying assumptions the differential equations that we obtain are:

dx

dt
= ax− bxy dy

dt
= cxy − dy.

How do we deal these equations? Because of the interaction between the two populations x (prey)
and y (predator), we can view y as a function of x. As a consequence of the chain rule, we have

dy

dt
=
dy

dx
· dx
dt︸ ︷︷ ︸

chain rule

 
dy

dx
=
dy/dt

dx/dt
 

dy

dx
=

(cx− d)y

x(a− by)
.

Here is a numerical example with a = 1, b = 4, c = 2, and d = 3, so that

dy

dx
=

(2x− 3)y

x(1− 4y)
.

2Alfred Lotka (March 2, 1880–December 5, 1949) was a Polish-born mathematician, physical chemist, and statis-
tician, best known for his proposal of the predator-prey model, developed simultaneously but independently of Vito
Volterra. The Lotka-Volterra model is still the basis of many models used in the analysis of population dynamics in
ecology.

3Vito Volterra (3 May, 1860–11 October, 1940) was an Italian mathematician and physicist, known for his
contributions to mathematical biology and integral equations.
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If we separate the variables this leads to

1− 4y

y
dy =

2x− 3

x
dx  (1/y − 4) dy = (2− 3/x) dx.

After integrating we obtain the solution

ln y − 4y = 2x− 3 lnx+ C  ln y + ln(e−4y) + ln(x3) + ln(e−2x) = C  

ye−4yx3e−2x = κ,

where C and κ = eC are constants.

It is worth mentioning that we can write the general solution of the arbitrary Lotka-Volterra
equation in the same fashion.

The direction field of the differential equation dy/dx =
(2x− 3)y

x(1− 4y)
is different from the ones we

saw earlier. Again it has been produced with the SAGE commands introduced earlier.

Phase Portrait 4: direction field of dy/dx =
(2x− 3)y

x(1− 4y)
and some particular solutions.

Notice that the trajectories are closed curves. Furthermore, they all seem to evolve around the
point P (3/2, 1/4). This is the point where the factors 2x − 3 and 1 − 4y of dy/dt and dx/dt,
respectively, are both zero.

This confirms our heuristics that the two populations should exhibit a cyclic dynamic.

Example 5 (Solow’s economic growth model/Von Bertalanffy’s individual growth
model): These two models are two different reincarnations of the same differential equation,
namely

dy

dx
= aym − byn,

where a, b,m, and n are constants.

� Solow’s economic growth model: The capital stock k = k(t) varies over time t, increasing
as a result of investments and decreasing as a result of depreciation. With these basic
assumptions and using a Cobb-Douglass production function, the Solow’s growth economic
model4 becomes

dk

dt
= skα − δk with k(0) = k0,

where s, α, δ are constants 0 < s, α < 1 and δ > 0. The constants s and δ are called the rate
of savings and the depreciation rate, respectively.

4Robert Solow (born August 23, 1924) is an American economist particularly known for his work on the theory
of economic growth that culminated in the exogenous growth model named after him. He was awarded the John
Bates Clark Medal (in 1961) and the 1987 Nobel Prize in Economics.
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� Von Bertalanffy individual growth model: The individual growth model published
by von Bertalanffy5 in 1934 is widely used in biological models and exists in a number of
permutations. In one of its forms it says that the change of body weight W of an individual
is given by the difference between the process of building up (anabolism) and breaking down
(catabolism)

dW

dt
= ηW 2/3 − κW with W (0) = W0,

where η and κ are the constants of anabolism and catabolism, respectively. The exponents
2/3 and 1 indicate that the latter (anabolism and catabolism) are proportional to some
powers of the body weight W .

An even simpler type of von Bertalanffy growth equation that we have encountered so far
says that the length L = L(t) over time t of a fish is given by:

dL

dt
= rB (L∞ − L) with L(0) = L0,

where rB is the von Bertalanffy growth rate and L∞ the ultimate length of the fish. In this
case the powers of L that appear in the differential equation are 0 and 1 respectively. We
have also seen that the solution in this case is L(t) = L∞ − (L∞ − L0)e

−rBt.

Consider the differential equation given earlier in the case n = 1, that is

dy

dx
= a ym − b y  

dy

dx
= ym(a− b y1−m).

This suggests the use of the substitution u = y1−m. The chain rule says that

du

dx
=
du

dy
· dy
dx

 
du

dx
= (1−m) y[(1−m)−1] dy

dx
 

1

1−m
ym

du

dx
=
dy

dx
.

If we now substitute the latter expression into our original differential equation we get the separable
differential equation below

du

dx
= (1−m) (a− b u).

We now separate the variables, multiply both sides by −b, and then integrate. We obtain

b

b u− a
du = −(1−m) b dx  ln(b u− a) = −(1−m) b x+ C

where C is a constant. After a few additional simple algebraic manipulations and after substituting
back y1−m in place of u, we obtain

y =

[
a

b
+D · e−(1−m) b x

]1/(1−m)

,

where D = eC/b. The initial condition y(0) = y0 gives us the following value for the constant D:

namely, D = y1−m0 − a

b
. Thus the solution of our initial value problem is

y =

[
a

b
−
(
a

b
− y1−m0

)
· e−(1−m) b x

]1/(1−m)

.

5Karl Ludwig von Bertalanffy (September 19, 1901, Atzgersdorf near Vienna–June 12, 1972, Buffalo, New York)
was an Austrian-born biologist known as one of the founders of general systems theory (GST). GST is an interdis-
ciplinary practice that describes systems with interacting components, applicable to biology, cybernetics, and other
fields. Bertalanffy proposed that the laws of thermodynamics applied to closed systems, but not necessarily to “open
systems,” such as living things. His mathematical model of an organism’s growth over time, published in 1934, is
still in use today.
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Notice that y∞ = lim
x→∞

y =

[
a

b

]1/(1−m)

.

In the special case when m = 2/3, our model with initial condition y(0) = y0 and asymptotic value
y∞ simplifies to

dy

dx
= a y2/3 − b y  y =

[
a

b
−
(
a

b
− y1/30

)
· e−b x/3

]3
y∞ =

[
a

b

]3
.

Here is a numerical example with a = 1.5, b = 2, m = 2/3, and n = 1, so that

dy

dx
= 1.5 y2/3 − 2 y  y =

[
0.75−

(
0.75− 3

√
y0

)
e−2/3x

]3
.

The direction field of the given differential equation as well as the graphs of particular solutions
are below. Please notice the long term behavior of those solutions! As x approaches infinity the
solution approaches the value y∞ = (1.5/2)3 ≈ 0.422.

Phase Portrait 5: direction field of dy/dx = 1.5 y2/3 − 2 y and some particular solutions.
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