MA162: Finite mathematics

Financial Mathematics

Paul Koester

University of Kentucky
February 3, 2014

Schedule:

Loans

- An amount \$P is borrowed. (P stands for principal, or present value)
- The loan is to be repaid by making regular payments of size $\$ \mathrm{R}$ and the end of each period for the next n periods.
- Interest rate is i per period.
- Then

$$
P=R \cdot \frac{1-(1+i)^{-n}}{i}
$$

- In Excel, P can be computed by $=P V(i, n, R)$.
- In WeBWorK, P can be computed by $R^{*} P V(i, n)$.

Ex. 1: Car Loan

- Murray just purchased a car. The price of the car was $\$ 15,000$.
- He makes a $\$ 4000$ down payment takes out a car loan to cover the rest.
- He has to make payments at the end of each month for the next 4 years.
- The interest on the loan is 6% APR compounded monthly.
- Determine the size of Murray's monthly payment.

Direct application of the loan formula. $n=4 \cdot 12=48$, $i=0.06 / 12=0.005$, and $P=\$ 11,000$ (car is worth $\$ 15,000$ but he paid $\$ 4000$ up front.)
Then

$$
11000=R \cdot \frac{1-(1.005)^{-48}}{0.005}
$$

and solving for R, we get $R=\$ 258.34$.

Ex. 1: Car Loan (Continued)

- What is the total amount of interest that Murray pays? Murray makes 48 payments of $\$ 258.34$, so in total he pays back $48 \cdot 258.34=12,400.32$. He borrowed $\$ 11,000$, so $\$ 12,400.32-\$ 11,000=\$ 1,400.32$ was paid to interest.
- How much of Murray's first payment is due to interest? The first payment is due at the end of the first month. He borrowed \$11,000 and interest accrues at $i=0.005$ per month. So his outstanding balance right before the first payment is $\$ 11,000 \cdot(1.005)=\$ 11,055$. Therefore, $\$ 55$ of his first payment covers interest, and the remaining $258.34-55=\$ 203.34$ is applied towards reducing the principal.

Ex. 1: Car Loan (Continued)

- It is now 2.5 years from the time Murray took out his car loan and Murray just made the $30^{\text {th }}$ payment on his car.
- How much would he need to pay now in order to pay off the rest of his loan ${ }^{1}$? 1.5 years, or 18 months, remain on the loan. The outstanding balance is therefore

$$
P=258.34 \cdot \frac{1-1.005^{-18}}{0.005}=\$ 4,436.41
$$

- What is the total amount of interest that Murray pays assuming he pays off the balance in full immediately after the $30^{\text {th }}$ payment? Murray made 30 payments of $\$ 258.34$ and a payment of $\$ 4,436.41$. All in all, he paid $30 \cdot 258.34+4436.41=\$ 12,186.61$ whereas he borrowed $\$ 11,000$. Thus, $\$ 12,186.61-\$ 11,000=\$ 1,186.61$ is paid in interest.

[^0]
Ex. 2: Home-a-loan

- Norah has a 15 year home mortgage.
- She needs to pay $\$ 2300$ at the end of each month for the next 15 years.
- The interest on the loan is 3.625% APR compounded monthly.
- She is having trouble affording the $\$ 2300$ per month.
- To lower her monthly payment, she is going to refinance to a 30 year loan which has 4.5% APR compounded monthly.

Ex. 2: Home-a-loan

- Determine the size of her new monthly payment. First, we need to determine the amount borrowed:

$$
P=2300 \cdot \frac{1-(1+0.03625 / 12)^{-12 \cdot 15}}{(0.03625 / 12)}=\$ 318,985.12
$$

Now we use the loan formula a second time, but we use $P=\$ 318,985.12, i=0.045 / 12$, and $n=30 \cdot 12=360$.

$$
318,985.12=R \cdot \frac{1-(1+0.045 / 12)^{-360}}{(0.045 / 12)}
$$

Evaluating and solving for R, we find the new payment is \$1616.25.

Ex. 2: Home-a-loan

- Determine the total interest charges on the original loan. Total paid back is $\$ 2300 \cdot 12 \cdot 15=\$ 414,000$ and she had borrowed $\$ 318,985.12$, so she pays $\$ 414,000-\$ 318,985.12=\$ 95,014.88$ in interest
- Determine the total interest charges on the new loan. Total paid back is $\$ 1616.25 \cdot 12 \cdot 30=\$ 581,850$ and she had borrowed $\$ 318,985.12$, so she pays
$\$ 581,850-\$ 318,985.12=\$ 262,864.88$ in interest

Ex. 3: Chance to buy a ranch I

- Blanch can't pass up the chance to buy a ranch.
- She will borrow \$400,000.
- She will pay back this loan by making quarterly payments at the end of each quarter for 30 years.
- Interest on the loan is 6.2% APR compounded quarterly.
- Determine the size of Blanch's quarterly payments.

Use the loan formula with $P=400,000$, $i=0.062 / 4=0.0155$ and $n=4 \cdot 30=120$

$$
400,000=R \frac{1-(1.0155)^{-120}}{0.0155}
$$

Evaluating and solving for R, we find $R=\$ 7362.63$

Ex. 3: Chance to buy a ranch II

- Determine the interest charges on the loan.

Blanch makes 120 payments of $\$ 7362.63$, so she pays back a total of $120 \cdot 7362.63=\$ 883,515.60$. She had borrowed $\$ 400,000$ so the interest expense is
$\$ 883,515.60-\$ 400,000=\$ 483,515.60$

Ex. 3: Chance to buy a ranch I

- Blanch suspects she can drastically cut her interest expenses if she is able to make quarterly payments that are larger than required.
- Supposing that Blanch pays twice her scheduled payment each month, determine how many payments Blanch needs to make before she pays off the loan.
The new payments are $\$ 14,725.26$. Now,

$$
\$ 400,000=\$ 14,725.26 \frac{1-(1.0155)^{-n}}{0.0155}
$$

Multiply both sides by 0.0155 and divide both sides by 14725.26, we get

$$
0.421045197=1-(1.0155)^{-n}
$$

$$
\begin{aligned}
& \text { so }(1.0155)^{-n}=0.578954803 \text { and so } \\
& -n \cdot \ln (1.0155)=\ln (0.578954803) \text {, and so } n=35.53 \ldots
\end{aligned}
$$

Ex. 3: Chance to buy a ranch II

- Determine Blanch's interest charges on the loan if she makes double payments.
This is only an approximation. She makes 35.53 payments of $\$ 14,725.26$, so she pays back $35.53 \cdot 14725.26=\$ 523,188.49$
She borrowed $\$ 400,000$ so her interest charges are \$123,188.49.

The previous solution suggested that Blanch should make 35.53 payments. In reality, she can only make a whole number of payments. Lets figure out how much she owes after the 35th payment.
The present value of the first 35 payments is

$$
P=14,725.26 \frac{1-(1.0155)^{-35}}{0.0155}=\$ 395,475.59
$$

whereas the present value of the entire loan is $\$ 400,000$. Therefore, the outstanding balance after the 35th payment is $\$ 400,000-\$ 395,475.59=\$ 4,524.41$. This value is measured at time zero, whereas we need to measure its value immediately after the 35th payment, so we apply an accumulation factor for 35 periods:

$$
\$ 4,524.41 \cdot(1.0155)^{35}=\$ 7,751.02
$$

So, in reality, Blanch would make 34 payments of size $\$ 14,725.26$ and her last payment would consist of the $\$ 14,725.26$ and the remaining balance of $\$ 7,751.02$. Thus, the 35 th payment is $\$ 22,476.28$. This larger than normal payment is called a balloon payment.

What is the total interest expense, correctly dealing with this balloon payment?
Blanch made 34 payments of size $\$ 14,725.26$ and one payment of size $\$ 22,467.28$ for a total of

$$
34 \cdot \$ 14,725.26+\$ 22,467.28=\$ 523,135.12
$$

She had borrowed \$400, 000 so her total interest charges are \$123, 135.12.

Important Observations:

By doubling her quarterly payment size, the number of payments had dropped from 120 to 35 . In particular, doubling the payment size reduced the number of payments by more than $1 / 2$.
By doubling her quarterly payment size, the interest expense had dropped from $\$ 483,515.65$ to $\$ 123,135.12$. In particular, doubling the payment size reduced the interest expense by more than $1 / 2$.

Annuities

- A sequence of regular cash flows of $\$ R$ occurs at the end of each period for the next n periods. (R stands for "regular cash flow")
- Interest rate is i per period.
- Then the present value, P, of this annuity is

$$
P=R \cdot \frac{1-(1+i)^{-n}}{i}
$$

- In Excel, P can be computed by $=P V(i, n, R)$.
- In WeBWork, P can be computed by $R^{*} P V(i, n)$.
- P answers the question "What is the value of this entire stream of cash flows evaluated at the beginning"

Annuities

- Then the accumulated value, or future value, F, of this annuity is

$$
F=R \cdot \frac{(1+i)^{n}-1}{i}
$$

- In Excel, P can be computed by $=F V(i, n, R)$.
- In WeBWorK, P can be computed by $R^{*} F V(i, n)$.
- F answers the questions like "If you save \$R at the end of each year for the next n years and interest is i per year, then what is the value of your savings at the end?"

Annuities versus Loans

- Annuities and loans both involve level sized cash flows that are paid at regular time intervals
- Mathematically, they are treated the same
- Financially, the regular cash flows in a loan are being paid out, while the regular cash flows in an annuity are being received

Ex 4: FV of Annuity

- Determine the accumulated value of a 8 year annuity with level cash flows of $\$ 1200$ at the end of each quarter, provided the cash flows earn 6% annual interest compounded quarterly. Use the annuity formula, accumulated value form.

$$
i=0.06 / 4=0.015, n=8 \cdot 4=32 \text { and } R=1200 \text {. So }
$$

$$
F=1200 \cdot \frac{(1.015)^{32}-1}{0.015}=\$ 48,825.95
$$

- Determine the present value of the above annuity. Use the annuity formula, present value form.

$$
\begin{gathered}
i=0.06 / 4=0.015, n=8 \cdot 4=32 \text { and } R=1200 \text {. So } \\
P=1200 \cdot \frac{1-(1.015)^{-32}}{0.015}=\$ 30,320.57
\end{gathered}
$$

Alternatively, since we already knew the accumulated value, we could have obtained the present value by discounting the accumulated value by 32 periods:

$$
\$ 48,825.95 \cdot(1.015)^{-32}=\$ 30,320.57
$$

[^0]: ${ }^{1}$ assuming no "early pay-off fees"

