MA162: Finite mathematics

Financial Mathematics

Paul Koester

University of Kentucky
February 3, 2014

Schedule:

Loans

- An amount \$P is borrowed. (P stands for principal, or present value)
- The loan is to be repaid by making regular payments of size $\$ \mathrm{R}$ and the end of each period for the next n periods.
- Interest rate is i per period.
- Then

$$
P=R \cdot \frac{1-(1+i)^{-n}}{i}
$$

- In Excel, P can be computed by $=P V(i, n, R)$.
- In WeBWorK, P can be computed by $R^{*} P V(i, n)$.

Ex. 1: Car Loan

- Murray just purchased a car. The price of the car was $\$ 15,000$.
- He makes a $\$ 4000$ down payment takes out a car loan to cover the rest.
- He has to make payments at the end of each month for the next 4 years.
- The interest on the loan is 6% APR compounded monthly.
- Determine the size of Murray's monthly payment.

Ex. 1: Car Loan (Continued)

- What is the total amount of interest that Murray pays?
- How much of Murray's first payment is due to interest?

Ex. 1: Car Loan (Continued)

- It is now 2.5 years from the time Murray took out his car loan and Murray just made the $30^{\text {th }}$ payment on his car.
- How much would he need to pay now in order to pay off the rest of his loan ${ }^{1}$?
- What is the total amount of interest that Murray pays assuming he pays off the balance in full immediately after the $30^{\text {th }}$ payment?

Ex. 2: Home-a-loan

- Norah has a 15 year home mortgage.
- She needs to pay $\$ 2300$ at the end of each month for the next 15 years.
- The interest on the loan is 3.625% APR compounded monthly.
- She is having trouble affording the $\$ 2300$ per month.
- To lower her monthly payment, she is going to refinance to a 30 year loan which has 4.5% APR compounded monthly.

Ex. 2: Home-a-loan

- Determine the size of her new monthly payment.

Ex. 2: Home-a-loan

- Determine the total interest charges on the original loan.
- Determine the total interest charges on the new loan.

Ex. 3: Chance to buy a ranch

- Blanch can't pass up the chance to buy a ranch.
- She will borrow \$400,000.
- She will pay back this loan by making quarterly payments at the end of each quarter for 30 years.
- Interest on the loan is 6.2% APR compounded quarterly.
- Determine the size of Blanch's quarterly payments.
- Determine the interest charges on the loan.

Ex. 3: Chance to buy a ranch

- Blanch suspects she can drastically cut her interest expenses if she is able to make quarterly payments that are larger than required.
- Supposing that Blanch pays twice her scheduled payment each month, determine how many payments Blanch needs to make before she pays off the loan.
- Determine Blanch's interest charges on the loan if she makes double payments.

Annuities

- A sequence of regular cash flows of $\$ R$ occurs at the end of each period for the next n periods. (R stands for "regular cash flow")
- Interest rate is i per period.
- Then the present value, P, of this annuity is

$$
P=R \cdot \frac{1-(1+i)^{-n}}{i}
$$

- In Excel, P can be computed by $=P V(i, n, R)$.
- In WeBWork, P can be computed by $R^{*} P V(i, n)$.
- P answers the question "What is the value of this entire stream of cash flows evaluated at the beginning"

Annuities

- Then the accumulated value, or future value, F, of this annuity is

$$
F=R \cdot \frac{(1+i)^{n}-1}{i}
$$

- In Excel, P can be computed by $=F V(i, n, R)$.
- In WeBWorK, P can be computed by $R^{*} F V(i, n)$.
- F answers the questions like "If you save \$R at the end of each year for the next n years and interest is i per year, then what is the value of your savings at the end?"

Annuities versus Loans

- Annuities and loans both involve level sized cash flows that are paid at regular time intervals
- Mathematically, they are treated the same
- Financially, the regular cash flows in a loan are being paid out, while the regular cash flows in an annuity are being received

Ex 4: FV of Annuity

- Determine the accumulated value of a 8 year annuity with level cash flows of $\$ 1200$ at the end of each quarter, provided the cash flows earn 6% annual interest compounded quarterly.
- Determine the present value of the above annuity.

