MA162: Finite mathematics
 Financial Mathematics

University of Kentucky
January 29, 2014

Schedule:

Last Time

- Compound Interest, Compounded \mathbf{m} times per year If $\$ P$ is invested for t years at annual interest rate r compounded m times per year, then A (the accumulated value) is

$$
A=P\left(1+\frac{r}{m}\right)^{m t}
$$

- Equivalently, letting $i=r / m$ (interest per period) and $n=m t$ (total number of periods) then

$$
A=P(1+i)^{n}
$$

- Continuously Compounded interest If $\$ P$ is invested for t years at continuously compounded rate of δ per year, then

$$
A=P e^{\delta t}
$$

Last Time

- Consider annual compound interest r compounded m times per year. The annual effective rate of interest, $r_{e} f f$ is obtained by solving this equation for $r_{\text {eff }}$:

$$
\left(1+\frac{r}{m}\right)^{m}=\left(1+r_{e f f}\right)
$$

- Consider continuously compounded interest rate of δ. The annual effective rate of interest, $r_{e} f f$ is obtained by solving this equation for $r_{\text {eff }}$:

$$
e^{\delta}=\left(1+r_{\text {eff }}\right)
$$

Ex. 1: Continuous Compound Interest

Find the present value of $\$ 2700$ invested for 12 years at continuously compounded rate of 2%.

Ex. 2: Effective Rate

Determine the continuously compounded rate of interest if the effective rate of interest is 6%

Ex. 3: Dealing with Varying Rate

- John borrowed $\$ 3500$ on January 29, 2010. He is to repay the loan on January 29, 2014.
- His loan is an adjustable rate loan, meaning that the interest rate can vary at certain specific times.
- The original interest rate was 3% APR compounded quarterly.
- On July 29, 2013, the interest rate was changed to 5\%.
- Assuming no more changes in the interest rate, how much must he pay back?

Ex. 4: Dealing with multiple cash flows

- Kendall opened a savings account 6 years ago, by invested $\$ 5000$ in an account which earns 4\% APR compounded semi-annually.
- 5 years ago, she deposited an extra $\$ 2000$.
- 2 years ago, she withdrew some amount, call it X .
- Her current balance is $\$ 4361$.
- Determine the size of X.

Ex. 5: Dealing with lots of cash flows

- Loraine won the Ohio Lottery. She can choose between accepting $\$ 9,000,000$ today or she can accept $\$ 600,000$ at the end of each year for the next 30 years.
- Assume discount rate of 3% per year, compounded annually.
- Which option is "better"?

Geometric Sum

Given a real number $a \neq 1$ and a positive integer n,

$$
a+a^{2}+a^{3}+\ldots+a^{n}=\frac{a-a^{n+1}}{1-a}
$$

Consequently,

$$
\frac{1}{1+i}+\left(\frac{1}{1+i}\right)^{2}+\left(\frac{1}{1+i}\right)^{3}+\ldots+\left(\frac{1}{1+i}\right)^{n}=\frac{\frac{1}{1+i}-\left(\frac{1}{1+i}\right)^{n+1}}{1-\frac{1}{1+i}}
$$

and with a bit of algebra, this simplifies down to

$$
\frac{1-(1+i)^{-n}}{i}
$$

Loans

- An amount \$P is borrowed. (P stands for principal, or present value)
- The loan is to be repaid by making regular payments of size $\$ \mathrm{R}$ and the end of each period for the next n periods.
- Interest rate is i per period.
- Then

$$
P=R \cdot \frac{1-(1+i)^{-n}}{i}
$$

- In Excel, P can be computed by $=P V(i, n, R)$.
- In WeBWorK, P can be computed by $R^{*} P V(i, n)$.

Ex. 6: Car Loan

- Murray just purchased a car. The price of the car was \$15, 000.
- He makes a $\$ 4000$ down payment takes out a car loan to cover the rest.
- He has to make payments at the end of each month for the next 4 years.
- The interest on the loan is 6% compounded monthly.
- Determine the size of Murray's monthly payment.

Ex. 6: Car Loan

- What is the total amount of interest that Murray pays?
- How much of Murray's first payment is due to interest?

