Quiz 10

Name: \qquad Section and/or TA: \qquad
Answer all questions in a clear and concise manner. Unsupported answers will receive no credit.

1. (3 points) Let C be the line segment from $(1,0)$ to $(4,4)$.
(a) Consider the function, $f(x, y)=x+y$. Compute the line integral,

$$
\int_{C} f(x, y) \mathrm{d} s
$$

Solution: We can parameterize C by

$$
\mathbf{r}(t)=\langle 4,4\rangle t+\langle 1,0\rangle(1-t)=\langle 1+3 t, 4 t\rangle
$$

$0 \leq t \leq 1$. Then $\mathbf{r}^{\prime}(t)=\langle 3,4\rangle$ and $\left|\mathbf{r}^{\prime}(t)\right|=5$, both constant in t. Then,

$$
\int_{C}(x+y) \mathrm{d} s=\int_{0}^{1}((1+3 t)+(4 t)) 5 \mathrm{~d} t=\frac{45}{2}
$$

(b) Consider the vector field, $\mathbf{G}(x, y)=\langle 2 x, y\rangle$. Here, the curve C is the same as above. Compute the line integral,

$$
\int_{C} \mathbf{G}(x, y) \cdot \mathrm{d} \mathbf{r}
$$

Solution: Using the parameterization from part (a), taking the line integral of the vector field, G, we get,

$$
\int_{C} \mathbf{G}(x, y) \cdot \mathrm{d} \mathbf{r}=\int_{0}^{1}\langle 2(1+3 t), 4 t\rangle \cdot\langle 3,4\rangle \mathrm{d} t=\int_{0}^{1}(6+34 t) \mathrm{d} t=23
$$

2. (2 points) Let C be the curve given by $\mathbf{r}(t)=\left\langle t^{2}+1,3^{t}\right\rangle$ for $0 \leq t \leq 1$. Consider the vector field, $\mathbf{F}(x, y)=\langle y, x\rangle$. Show that $\mathbf{F}(x, y)$ is a conservative vector field then compute the line integral,

$$
\int_{C} \mathbf{F}(x, y) \cdot \mathrm{d} \mathbf{r}
$$

Solution: Note that the function $f(x, y)=x y$ has the properties that $f_{x}(x, y)=y$ and $f_{y}(x, y)=x$ so that $\nabla f(x, y)=\mathbf{F}(x, y)$. Therefore, \mathbf{F} is a conservative vector field. We can then use the fundamental theorem of calculus for line integrals to evaluate the desired integral. We note that the endpoints of the curve C are $\mathbf{r}(0)=$ $\langle 1,1\rangle$ and $\mathbf{r}(1)=\langle 2,3\rangle$
So,

$$
\int_{C} \mathbf{F}(x, y) \cdot \mathrm{d} \mathbf{r}=f(\mathbf{r}(1))-f(\mathbf{r}(0))=6-1=5
$$

