Quiz 2

Name: \qquad Section and/or TA: \qquad
Answer all questions in a clear and concise manner. Unsupported answers will receive no credit.

1. (a) (4 points) Let P be the plane through the points $A(2,0,0), B(-1,1,2)$ and $C(2,-2,2)$. Find a unit vector that is orthogonal to the plane P.

Solution: Let $\mathbf{u}=(-\mathbf{i}+\mathbf{j}+2 \mathbf{k})-(2 \mathbf{i})=-3 \mathbf{i}+\mathbf{j}+2 \mathbf{k}$ be the vector from A to B and $\mathbf{v}=(2 \mathbf{i}-2 \mathbf{j}+2 \mathbf{k})-(2 \mathbf{i})=-2 \mathbf{j}+2 \mathbf{k}$ be the vector from A to C. Then any vector orthogonal to both \mathbf{u} and \mathbf{v} is orthogonal to P. We can find one by computing $\mathbf{u} \times \mathbf{v}$.

$$
\begin{aligned}
\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-3 & 1 & 2 \\
0 & -2 & 2
\end{array}\right| & =\left|\begin{array}{cc}
1 & 2 \\
-2 & 2
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
-3 & 2 \\
0 & 2
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
-3 & 1 \\
0 & -2
\end{array}\right| \mathbf{k} \\
& =6 \mathbf{i}+6 \mathbf{j}+6 \mathbf{k}
\end{aligned}
$$

Thus, the two unit vectors orthogonal to P are $\frac{1}{\sqrt{3}} \mathbf{i}+\frac{1}{\sqrt{3}} \mathbf{j}+\frac{1}{\sqrt{3}} \mathbf{k}$ and $\frac{-1}{\sqrt{3}} \mathbf{i}+\frac{-1}{\sqrt{3}} \mathbf{j}+\frac{-1}{\sqrt{3}} \mathbf{k}$
(b) (1 point) Find the area of the of the triangle $\triangle A B C$

Solution: $|\mathbf{u} \times \mathbf{v}|$ gives us the area of the parallelogram whose adjacent sides are $A B$ and $A C$. So, the are of the triangle $\triangle A B C$ is

$$
\frac{1}{2}|\mathbf{u} \times \mathbf{v}|=\frac{\sqrt{108}}{2}=\frac{\sqrt{4 \cdot 27}}{2}=3 \sqrt{3}
$$

