# MA 213 Worksheet \#12 

Section 14.5

10/04/18

1 Use the Chain Rule to find $d z / d t$.

$$
\begin{array}{llll}
14.5 .1 & z=x y^{3}-x^{2} y & x=t^{2}+1 & y=t^{2}-1 \\
14.5 .3 & z=\sin (x) \cos (y) & x=\sqrt{t} & y=1 / t
\end{array}
$$

2 14.5.11 Use the Chain Rule to find $\partial z / \partial s$ and $\partial z / \partial t$. $z=e^{r} \cos (\theta) \quad r=s t \quad \theta=\sqrt{s^{2}+t^{2}}$

3 14.5.15 Suppose $f$ is a differentiable function of $x$ and $y$, and $g(u, v)=f\left(e^{u}+\sin (v), e^{u}+\cos (v)\right)$. Use the table of values to calculate $g_{u}(0,0)$ and $g_{v}(0,0)$.

|  | $f$ | $g$ | $f_{x}$ | $f_{y}$ |
| :---: | :---: | :---: | :---: | :---: |
| $(0,0)$ | 3 | 6 | 4 | 8 |
| $(1,2)$ | 6 | 3 | 2 | 5 |

4 14.5.23 Use the Chain Rule to find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial \theta}$ when $r=2, \theta=\pi / 2$. $w=x y+y z+z x \quad x=r \cos (\theta) \quad y=r \sin (\theta) \quad z=r \theta$

5 Find $\partial z / \partial x$ and $\partial z / \partial y$ (assuming $z$ is implicitly a function of $x$ and $y$ ).
14.5.31 $x^{2}+2 y^{2}+3 z^{2}=1$
14.5.33 $\quad e^{z}=x y z$

6 14.5.39 Due to strange and difficult-to-explain circumstances, the length $\ell$, width $w$, and height $h$ of a box change with time. At a certain instant the dimensions are $\ell=1 \mathrm{~m}$ and $w=h=2 \mathrm{~m}$, and $\ell$ and $w$ are increasing at a rate of $2 \mathrm{~m} / \mathrm{s}$ while $h$ is decreasing at a rate of $3 \mathrm{~m} / \mathrm{s}$. At that instant find the rates at which the following quantities are changing.
a The volume
b The surface area
c The length of a diagonal

