MA 213 Worksheet \#14

Section 14.7

10/11/18

1 Find the local maximum and minimum values and saddle point(s) of the function.
(a) 14.7.5: $f(x, y)=x^{2}+x y+y^{2}+y$
(b) 14.7.7: $f(x, y)=(x-y)(1-x y)$

2 14.7.33 Find the absolute maximum and minimum values of $f(x, y)=x^{2}+y^{2}+x^{2} y+4$ on the set $D=\{(x, y)| | x|\leq 1,|y| \leq 1\}$.

3 14.7.45 Find three positive numbers whose sum is 100 and whose product is a maximum.

4 14.7.53 A cardboard box without a lid is to have a volume of $32,000 \mathrm{~cm}^{3}$. Find the dimensions that minimize the amount of cardboard used.

5 14.7.42 Find the point on the plane $x-2 y+3 z=6$ that is closest to the point $(0,1,1)$. Note: The distance to a plane formula on page 830 in the textbook can be used to check your answer.

6 14.7.55 If the length of the diagonal of a rectangular box must be L, what is the largest possible volume?

7 14.7.58 Three alleles (alternative versions of a gene) A, B and O determine the four blood types $A(A A$ or $A O), B(B B$ or $B O), O(O O)$, and $A B$. The Hardy-Weinberg Law states that the proportion of individuals in a population who carry two different alleles is

$$
P=2 p q+2 p r+2 r q
$$

where p, q and r are the proportions of A, B and O in the population. Use the fact that $p+q+r=1$ to show that P is at most $\frac{2}{3}$.

