MA 213 Worksheet \#16

Sections 15.1 and 15.2
10/23/18

1 15.1.9 Evaluate the double integral by first identifying it as the volume of a solid.

$$
\iint_{R} \sqrt{2} d A, \quad R=\{(x, y) \mid 2 \leq x \leq 6,-1 \leq y \leq 5\}
$$

2 Calculate the iterated integral.
(a) 15.1.15 $\int_{1}^{4} \int_{0}^{2}\left(6 x^{2} y-2 x\right) d y d x$
(b) 15.1.17 $\int_{0}^{1} \int_{1}^{2}\left(x+e^{-y}\right) d x d y$

3 15.2.1 Evaluate the iterated integral: $\int_{1}^{5} \int_{0}^{x}(8 x-2 y) d y d x$

4 15.2.13 Evaluate the double integral in two ways.

$$
\iint_{D} x d A
$$

D is enclosed by the lines $y=x, y=0, x=1$.

5 15.2.15 Set up iterated integrals for both orders of integration. Then evaluate the double integral using the easier order and explain why its easier.

$$
\iint_{D} y d A
$$

D is bounded by $y=x-2, x=y^{2}$

6 15.1.37 Find the volume of the solid that lies under the plane $4 x+6 y-2 z+15=0$ and above the rectangle $R=\{(x, y) \mid-1 \leq x \leq 2,-1 \leq y \leq 1\}$

7 15.2.23 Find the volume of the solid that is under the plane $3 x+2 y-z=0$ and above the region enclosed by the parabolas $y=x^{2}$ and $x=y^{2}$.

