MA 213 Worksheet \#17

Sections 15.3
10/25/18

1 15.3.5 Sketch the region whose area is given by the integral and evaluate the integral:

$$
\int_{\pi / 4}^{3 \pi / 4} \int_{1}^{2} r d r d \theta
$$

2 15.2.7,9 Evaluate the given integral by changing to polar coordinates.
(a) $\iint_{D} x^{2} y d A$, where D is the top half of the disk with center the origin and radius 5 .
(b) $\iint_{R} \sin \left(x^{2}+y^{2}\right) d A$, where R is the region in the first quadrant between the circles with center the origin and radii 1 and 3 .

3 15.2.17 Use a double integral to find the area of the region inside the circle $(x-1)^{2}+y^{2}=1$ and outside the circle $x^{2}+y^{2}=1$.

4 15.2.23 Use polar coordinates to find the volume of the sphere of radius a. (How might you check your answer to this?)

5 15.2.35 A swimming pool is circular with a 40 ft diameter. The depth is constant along east-west lines and increases linearly from 2 ft at the south end to 7 ft at the north end. Find the volume of water in the pool.

6 Review from 15.2: 15.2.35,37 Find the volume of the solid by subtracting two volumes.
(a) The solid enclosed by the parabolic cylinders $y=1-x^{2}, y=x^{2}-1$ and the planes $x+y+z=2,2 x+2 y-z+10=0$.
(b) The solid under the plane $z=3$, above the plane $z=y$, and between the parabolic cylinders $y=x^{2}$ and $y=1-x^{2}$.

