MA 213 Worksheet \#18

Section 15.415 .5
10/30/18

1 Find the mass and center of mass of the lamina that occupies the region D and has the given density function ρ.
15.4.3 (a) $D=\{(x, y) \mid 1 \leq x \leq 3,1 \leq y \leq 4\} ; \rho(x, y)=k y^{2}$
15.4 .9 (b) D is bounded by the curves $y=e^{-x}, y=0, x=0, x=1 ; \rho(x, y)=x y$

2 15.4.11 A lamina occupies the part of the disk $x^{2}+y^{2} \leq 1$ in the first quadrant. Find its center of mass if the density at any point is proportional to its distance from the x-axis.

3 15.4.21 A lamina with constant density $\rho(x, y)=\rho$ occupies the rectangle $0 \leq x \leq b, 0 \leq y \leq h$. Find the moments of inertia I_{x} and I_{y} and the radii of gyration $\overline{\bar{x}}$ and $\overline{\bar{y}}$.

4 15.4.23 A lamina with constant density $\rho(x, y)=\rho$ occupies the part of the disk $x^{2}+y^{2} \leq a^{2}$ in the first quadrant. Find the moments of inertia I_{x} and I_{y} and the radii of gyration $\overline{\bar{x}}$ and $\overline{\bar{y}}$.

5 Find the area of the surface:
15.5.1 (a) The part of the plane $5 x+3 y-z+6=0$ that lies above the rectangle $[1,4] \times[2,6]$
15.5.3 (b) The part of the plane $3 x+2 y+z=6$ that lies in the first octant.
15.5 .5 (c) The part of the paraboloid $z=1-x^{2}-y^{2}$ that lies above the plane $z=-2$.
15.5.9 (d) The part of the surface $z=x y$ that lies within the cylinder $x^{2}+y^{2}=1$.
15.5.11(e) The part of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ that lies within the cylinder $x^{2}+y^{2}=a x$ and above the $x y$-plane.

