MA 213 Worksheet \#2

Section 12.2
8/28/18

1 12.2.3 Name all the equal vectors in the parallelogram shown.

2 12.2.5 Copy the vectors in the figure and use them to draw the following vectors.

3 Find a vector a with representation given by the directed line segment $\overrightarrow{A B}$. Draw $\overrightarrow{A B}$ and the equivalent representation starting at the origin.

12.2.9	$A(-2,1)$,	$B(1,2)$
12.2.11	$A(3,-1)$,	$B(2,3)$
12.2.13	$A(0,3,1)$,	$B(2,3,-1)$

4 Find $\mathbf{a}+\mathbf{b}, 4 \mathbf{a}+2 \mathbf{b},|\mathbf{a}|$ and $|\mathbf{a}-\mathbf{b}|$.
12.2.19 $\quad \mathbf{a}=\langle-3,4\rangle, \quad \mathbf{b}=\langle 9,-1\rangle$
12.2.21 $\quad \mathbf{a}=4 \mathbf{i}-3 \mathbf{j}, \quad \mathbf{b}=2 \mathbf{i}-4 \mathbf{k}$

5 Find a unit vector that has the same direction as the given vector.
12.2.23 $\langle 6,-2\rangle$
12.2.25 $\quad 8 \mathbf{i}-\mathbf{j}+4 \mathbf{k}$

6 12.2.29 If \mathbf{v} lies in the first quadrant and makes an angle $\pi / 3$ with the positive x-axis and $|\mathbf{v}|=4$, find \mathbf{v} in component form.

7 12.2.33 Find the magnitude of the resultant force and the angle it makes with the positive x-axis.

8 12.2.47 If $\mathbf{r}=\langle x, y, z\rangle$ and $\mathbf{r}_{0}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, describe the set of all points (x, y, z) such that $\left|\mathbf{r}-\mathbf{r}_{0}\right|=1$.

9 12.2.37 A block-and tackle pulley hoist is suspended in a warehouse by ropes of lengths 2 m and 3 m . The hoist weighs 350 N . The ropes, fastened at different heights, make angles of 50° and 38° with the horizontal. Find the tension in each rope and the magnitude of each tension.

