MA 213 Worksheet \#21

Section 15.8
11/08/18

1 15.8.1 Plot the point whose spherical coordinates are given. Then find the rectangular coordinates of the point.
(a) $(6, \pi / 3, \pi / 6)$
(b) $(3, \pi / 2,3 \pi / 4)$

2 15.8.3 Change from rectangular to spherical coordinates.
(a) $(0,-2,0)$
(b) $(-1,1,-\sqrt{2})$

3 15.8.9 Write the equation is spherical coordinates.
(a) $x^{2}+y^{2}+z^{2}=9$
(b) $x^{2}-y^{2}-z^{2}=1$

4 15.8.15 A solid lies above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the sphere $x^{2}+y^{2}+z^{2}=z$. Write a description of the solid in terms of inequalities involving spherical coordinates.

5 15.8.17 Sketch the solid whose volume is given by the integral and evaluate the integral.

$$
\int_{0}^{\pi / 6} \int_{0}^{\pi / 2} \int_{0}^{3} \rho^{2} \sin (\phi) \mathrm{d} \rho \mathrm{~d} \theta \mathrm{~d} \phi
$$

6 15.8.21 Evaluate $\iiint_{B}\left(x^{2}+y^{2}+z^{2}\right)^{2} \mathrm{~d} V$, where B is the ball with center the origin and radius 5.

7 15.8.23 Evaluate $\iiint_{E} x^{2}+y^{2} \mathrm{~d} V$, where E lies between the spheres $x^{2}+y^{2}+z^{2}=4$ and $x^{2}+y^{2}+z^{2}=9$.

8 15.8.25 Evaluate $\iiint_{E} x e^{x^{2}+y^{2}+z^{2}} \mathrm{~d} V$, where E is the portion of the unit ball $x^{2}+y^{2}+z^{2} \leq 1$ that lies in the first octant.
$9 \quad 15.8 .31$
(a) Find the centroid of the solid that lies above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the sphere $x^{2}+y^{2}+z^{2}=z$ (assume constant density K).
(b) Find the moment of inertia about the z-axis for this solid.

