MA 213 Worksheet \#24

Section 16.2 \& 16.3
11/27/18

1 Evaluate the line integral, where C is the given curve.
16.2.1 $\int_{C} y d s, \quad C: x=t^{2}, y=2 t, 0 \leq t \leq 3$.
16.2.10 $\int_{C} y^{2} z d s, \quad C$ is the line segment from $(3,1,2)$ to $(1,2,5)$.
16.2.14 $\int_{C} y d x+z d y+x d z, \quad C: x=\sqrt{t}, y=t, z=t^{2}, 1 \leq t \leq 4$.

2 Evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is the given curve.
16.2.19 $\mathbf{F}(x, y)=x y^{2} \mathbf{i}-x^{2} \mathbf{j}, \quad \mathbf{r}(t)=t^{3} \mathbf{i}+t^{2} \mathbf{j}, \quad 0 \leq t \leq 1$.
16.2.22 $\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+x y \mathbf{k}, \quad \mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}, 0 \leq t \leq \pi$.

3 16.2.39 Find the work done by the force field $\mathbf{F}(x, y)=x \mathbf{i}+(y+2) \mathbf{j}$ in moving an object along an arch of the cycloid: $\mathbf{r}(t)=(t-\sin t) \mathbf{i}+(1-\cos t) \mathbf{j}, \quad 0 \leq t \leq 2 \pi$.

4 Determine whether or not \mathbf{F} is a conservative vector field.
16.3.3 $\mathbf{F}(x, y)=\left(x y+y^{2}\right) \mathbf{i}+\left(x^{2}+2 x y\right) \mathbf{j}$.
14.3.7 $\mathbf{F}(x, y)=\left(y e^{x}+\sin y\right) \mathbf{i}+\left(e^{x}+x \cos y\right) \mathbf{j}$

5 Find a function f such that $\mathbf{F}=\nabla f$ and evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ along the given curve C.
16.3.12 $\mathbf{F}(x, y)=\left(3+2 x y^{2}\right) \mathbf{i}+2 x^{2} y \mathbf{j}, C$ is the arc of the hyperbola $y=1 / x$ from $(1,1)$ to $\left(4, \frac{1}{4}\right)$.
16.3.15 $\mathbf{F}(x, y, z)=y z \mathbf{i}+x z \mathbf{j}+(x y+2 z) \mathbf{k}, C$ is the line segment from $(1,0,-2)$ to $(4,6,3)$.

6 Show the line integral is independent of path and evaluate the integral.
16.3.19 $\int_{C} 2 x e^{-y} d x+\left(2 y-x^{2} e^{-y}\right)$, where C is any path from $(1,0)$ to $(2,1)$.

7 16.3.24 Find the work done by the force field $\mathbf{F}(x, y)=(2 x+y) \mathbf{i}+x \mathbf{j}$ in moving an object from $P(1,1)$ to $Q(4,3)$.

