MA 213 Worksheet \#25

Section 16.4
29/11/18

1. 16.4.1,3 Evaluate the line integral by two methods: (i) directly and (ii) using Green's Theorem.
(a) $\oint_{C} y^{2} d x+x^{2} y d y$ where C is the rectangle with vertices $(0,0),(5,0),(5,4)$, and (0, 4).
(b) $\oint_{C} x y d x+x^{2} y^{3} d y$ where C is the triangle with vertices $(0,0),(1,0)$, and $(1,2)$.
2. 16.4.7 Use Green's Theorem to evaluate

$$
\oint_{C}\left(y+e^{\sqrt{x}}\right) d x+\left(2 x+\cos y^{2}\right) d y
$$

where C is the boundary of the region enclosed by the parabolas $y=x^{2}$ and $x=y^{2}$.
3. 16.4.13 Use Green's Theorem to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}=\langle y-\cos y, x \sin y\rangle$ and C is the circle $(x-3)^{2}+(y+4)^{2}=4$ oriented clockwise.
4. 16.4.17 Use Green's Theorem to find the work done by the force $\vec{F}(x, y)=x(x+y) \vec{i}+x y^{2} \vec{j}$ in moving a particle from the origin along the x-axis to $(1,0)$, then along the line segment to $(0,1)$ and then back to the origin along the y-axis.

