MA 213 Worksheet \#7
 Sections 13.1 and 13.2
 9/13/18

1 13.1.7 Sketch the curve $\mathbf{r}(t)=\langle\sin t, t\rangle$. Indicate with an arrow the direction in which t increases.

2 13.1.17 Find a vector equation and parametric equations for the line segment that joins $P(2,0,0)$ to $Q(6,2,-2)$.

3 13.1.49 Suppose the trajectories of two particles are given by the vector functions

$$
\mathbf{r}_{1}(t)=\left\langle t^{2}, 7 t-12, t^{2}\right\rangle \quad \mathbf{r}_{2}(t)=\left\langle 4 t-3, t^{2}, 5 t-6\right\rangle
$$

for $t \geq 0$. Do the particles collide?

4 13.2.9, 11 Find the derivative of the following vector functions:
(a) $r(t)=\left\langle\sqrt{t-2}, 3,1 / t^{2}\right\rangle$
(b) $r(t)=t^{2} \mathbf{i}+\cos \left(t^{2}\right) \mathbf{j}+\sin ^{2}(t) \mathbf{k}$

5 13.2.17 Find the unit tangent vector $T(t)$ at the point $t=2: r(t)=\left\langle t^{2}-2 t, 1+3 t, 1 / 3 t^{3}+1 / 2 t^{2}\right\rangle$.

6 13.2.35, 37 Evaluate the integral:
(a) $\left.\int_{0}^{2}\left(t \mathbf{i}-t^{3} \mathbf{j}+3 t^{5} \mathbf{k}\right)\right) d t$
(b) $\int_{0}^{1}\left(\frac{1}{t+1} \mathbf{i}+\frac{1}{t^{2}+1} \mathbf{j}+\frac{t}{t^{2}+1} \mathbf{k}\right) d t$

7 13.2.49 Find $f^{\prime}(2)$, where $f(t)=u(t) \cdot v(t), u(2)=\langle 1,2,-1\rangle, u^{\prime}(2)=\langle 3,0,4\rangle$ and $v(t)=\left\langle t, t^{2}, t^{3}\right\rangle$.

8 13.2.27 Find a vector equation for the tangent line to the curve of intersection of the cylinders $x^{2}+y^{2}=25$ and $y^{2}+z^{2}=20$ at the point $(3,4,2)$.

