MA 213 Worksheet \#8
 Sections 13.3 and 13.4
 9/18/18

1 Find the length of the following curves.
13.3.1 $\quad \mathbf{r}(t)=\langle t, 3 \cos (t), 3 \sin (t)\rangle \quad-5 \leq t \leq 5$
13.3.3 $\quad \mathbf{r}(t)=\sqrt{2} t \mathbf{i}+e^{t} \mathbf{j}+e^{-t} \mathbf{k} \quad 0 \leq t \leq 1$
13.3.5 $\mathbf{r}(t)=\mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k} \quad 0 \leq t \leq 1$

2 13.3.13 Let $\mathbf{r}(t)=(5-t) \mathbf{i}+(4 t-4) \mathbf{j}+3 t \mathbf{k}$.
a Find the arc length function for $\mathbf{r}(t)$ measured from the point $P=(4,1,3)$ in the direction of increasing t and then reparameterize the curve with respect to arc length starting from P.
b Find the point 4 units along $\mathbf{r}(t)$ (in the direction of increasing t) from P.
3 Find the unit tangent vector, the unit normal vector and the curvature for the following curves.
13.3.17 $\quad \mathbf{r}(t)=\langle t, 3 \cos (t), 3 \sin (t)\rangle$
13.3.19 $\mathbf{r}(t)=\left\langle\sqrt{2} t, e^{t}, e^{-t}\right\rangle$

4 Find the curvature of the following curves.
13.3.27 $y=x^{4}\left(\right.$ in $\left.\mathbf{R}^{2}\right)$
13.3.21 $\quad \mathbf{r}(t)=t^{3} \mathbf{j}+t^{2} \mathbf{k}$
13.3.23 $\quad \mathbf{r}(t)=\sqrt{6} t^{2} \mathbf{i}+2 t \mathbf{j}+2 t^{3} \mathbf{k}$

5 12.3.47 Find the vectors \mathbf{T}, \mathbf{N} and \mathbf{B} for $\mathbf{r}(t)=\left\langle t^{2}, \frac{2}{3} t^{3}, t\right\rangle$ at the point $\left(1, \frac{2}{3}, 1\right)$.

6 12.3.49 Find equations of the normal plane and osculating plane of the following curve at ($0,1,2 \pi$).
$x=\sin (2 t) \quad y=-\cos (2 t) \quad z=4 t$

7 Find the velocity, acceleration and speed of a particle with the given position function. Sketch the path of the particle. Draw the velocity and acceleration vectors for the specified value of t.
13.4.3 $\quad \mathbf{r}(t)=\left\langle-\frac{1}{2} t^{2}, t\right\rangle \quad t=2$
13.4.7 $\quad \mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+2 \mathbf{k} \quad t=1$
813.4 .25 A ball is thrown at an angle of $\pi / 4$ to the ground. if the ball lands 90 m away, what was the initial speed of the ball?

9 Find the tangential and normal components of the acceleration vector.
13.4.37 $\quad \mathbf{r}(t)=\left(t^{2}+1\right) \mathbf{i}+t^{3} \mathbf{j}+2 \mathbf{k}, \quad t \geq 0$
13.4.39 $\quad \mathbf{r}(t)=\cos (t) \mathbf{i}+\sin (t) \mathbf{j}+t \mathbf{k}$

