MA 213 Worksheet #8

Sections 13.3 and 13.4 9/18/18

- **1** Find the length of the following curves.
 - $\begin{array}{ll} 13.3.1 & \mathbf{r}(t) = \langle t, 3\cos(t), 3\sin(t) \rangle & -5 \le t \le 5\\ 13.3.3 & \mathbf{r}(t) = \sqrt{2}t\mathbf{i} + e^t\mathbf{j} + e^{-t}\mathbf{k} & 0 \le t \le 1\\ 13.3.5 & \mathbf{r}(t) = \mathbf{i} + t^2\mathbf{j} + t^3\mathbf{k} & 0 \le t \le 1 \end{array}$
- **2** 13.3.13 Let $\mathbf{r}(t) = (5-t)\mathbf{i} + (4t-4)\mathbf{j} + 3t\mathbf{k}$.
 - **a** Find the arc length function for $\mathbf{r}(t)$ measured from the point P = (4, 1, 3) in the direction of increasing t and then reparameterize the curve with respect to arc length starting from P.
 - **b** Find the point 4 units along $\mathbf{r}(t)$ (in the direction of increasing t) from P.
- **3** Find the unit tangent vector, the unit normal vector and the curvature for the following curves. 13.3.17 $\mathbf{r}(t) = \langle t, 3\cos(t), 3\sin(t) \rangle$ 13.3.19 $\mathbf{r}(t) = \langle \sqrt{2}t, e^t, e^{-t} \rangle$
- 4 Find the curvature of the following curves.

13.3.27 $y = x^4 \text{ (in } \mathbf{R}^2)$ 13.3.21 $\mathbf{r}(t) = t^3 \mathbf{j} + t^2 \mathbf{k}$ 13.3.23 $\mathbf{r}(t) = \sqrt{6}t^2 \mathbf{i} + 2t \mathbf{j} + 2t^3 \mathbf{k}$

- **5** 12.3.47 Find the vectors **T**, **N** and **B** for $\mathbf{r}(t) = \langle t^2, \frac{2}{3}t^3, t \rangle$ at the point $(1, \frac{2}{3}, 1)$.
- **6** 12.3.49 Find equations of the normal plane and osculating plane of the following curve at $(0, 1, 2\pi)$. $x = \sin(2t)$ $y = -\cos(2t)$ z = 4t
- 7 Find the velocity, acceleration and speed of a particle with the given position function. Sketch the path of the particle. Draw the velocity and acceleration vectors for the specified value of t. 13.4.3 $\mathbf{r}(t) = \langle -\frac{1}{2}t^2, t \rangle$ t = 213.4.7 $\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + 2\mathbf{k}$ t = 1
- 8 13.4.25 A ball is thrown at an angle of $\pi/4$ to the ground. if the ball lands 90 m away, what was the initial speed of the ball?
- **9** Find the tangential and normal components of the acceleration vector. 13.4.37 $\mathbf{r}(t) = (t^2 + 1)\mathbf{i} + t^3\mathbf{j} + 2\mathbf{k}, \quad t \ge 0$ 13.4.39 $\mathbf{r}(t) = \cos(t)\mathbf{i} + \sin(t)\mathbf{j} + t\mathbf{k}$