Exam 2

Name:							Se	ction a	and/o	or TA:	:			
Do allowed page sl but NO permit The Record cle corn Sho	not red two heet of calcotted. At examinating the examination of the calcotted of the calco	emov hour f forr ulator bsolu con answ ading	e this s to co nulas r with itely r sists vers to to the	answomple and a Conocello of 10 the corrective	ver pagete this facts. Yompute I phone multipect answ	ge — you wetest. No bow ou may use read a choice declarate the choice of	se a g Syste g the questi uesti	or note graphi em (C exam tions ons o	es ma ing ca AS) o is all and 4 n this	y be u alcula or a Q owed I free page	tor du WER l. respe	xcep uring TY k onse	t for a the d eybo ques in th	a one- exam ard is stions ne cir-
					Mult	iple Choice	e Que	estion	S					
1 2 3 4 5	AAAAA	BBBBB	©	D D D D	E E E		6 7 8 9	AAAAA	BBBBB	©	D D D D	E E E E		

SCORE

Multiple	11	12	13	14	Total
Choice					Score
50	10	15	10	15	100

Multiple Choice Questions

- 1. Find the arc length of the curve $r(t) = \langle 2t, \cos t, \sin t \rangle$ from (0, 1, 0) to $(\pi, 0, 1)$.
 - A. $\sqrt{5}\pi$
 - **B.** $\sqrt{5}\pi/2$
 - C. 2π
 - D. π
 - E. $2\sqrt{5}\pi$
- 2. Find the domain of the function

$$f(x,y,z) = \frac{\sqrt{x-1}}{\sqrt{1-y}} + \ln(4 - x^2 - y^2 - z^2)$$

- A. $\{(x, y, z) : y \neq 1\}$
- B. $\{(x, y, z) : x < 1, -2 < y < 1, \text{ and } x^2 + y^2 + z^2 > 4\}$
- C. $\{(x, y, z) : -1 < x < 2 \text{ and } -1 < y < 0\}$
- D. $\{(x,y,z): 1 < x < 2, -2 < y < 1 \text{ and } x^2 + y^2 + z^2 \le 4\}$
- E. $\{(x,y,z): 1 \le x < 2, -2 < y < 1 \text{ and } x^2 + y^2 + z^2 < 4\}$
- 3. Let

$$u(x,y,z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}.$$

Find u_y .

- **A.** $\frac{-y}{(x^2+y^2+z^2)^{3/2}}$
- B. $\frac{2y}{\sqrt{x^2 + y^2 + z^2}}$
- C. $\frac{y}{\sqrt{x^2 + y^2 + z^2}}$
- D. $\frac{2x + 2y + 2z}{(x^2 + y^2 + z^2)^{3/2}}$
- E. $\frac{2x + 2y + 2z}{\sqrt{x^2 + y^2 + z^2}}$

- 4. Suppose that z satisfies the equation $yz + x \ln y = z^2$. Assuming that this equation defines z implicitly as a function of (x,y), determine $\partial z/\partial y$ at the point (x,y,z) = (2,1,1).
 - A. 0
 - B. 1
 - C. 1/2
 - **D.** 3
 - E. -1/2
- 5. Suppose that z(x,y) = F(u(x,y),v(x,y)) where F, u and v are differentiable. Suppose that

$$u(1,2) = 5$$
 $v(1,2) = 2$,

that

$$u_x(1,2) = 3$$
, $u_y(1,2) = -1$, $v_x(1,2) = -2$, $v_y(1,2) = 4$

and

$$F_u(5,2) = -2$$
, $F_v(5,2) = 6$.

- Find $z_y(1, 2)$.
 - A. 24
 - B. 22
 - **C.** 26
 - D. -5
 - E. -18
- 6. Find the directional derivative of $f(x,y) = xe^y$ at (2,0) in the direction of $\mathbf{u} = \langle 2, -2 \rangle$.
 - A. -2
 - B. 2
 - C. $1/\sqrt{2}$
 - **D.** $-1/\sqrt{2}$
 - E. 0

- 7. Let $f(x,y) = xy 2x 2y x^2 y^2$. Which of the following statements is correct?
 - A. f has a saddle point at (-2, -2)
 - **B.** f has a local maximum at (-2, -2)
 - C. f has a local minimum at (-2, -2)
 - D. f has a global maximum at (-2, -2)
 - E. f has neither local maxima, nor local minima, nor saddle points
- 8. Find the maximum rate of change of the function $f(x,y) = 4y\sqrt{x}$ at the point (x,y) = (4,1).
 - A. $\sqrt{17}$
 - **B.** $\sqrt{65}$
 - C. 7
 - D. 1
 - E. 0
- 9. Find the maximum and minimum values of $f(x,y) = x^2 y^2$ subject to the constraint $x^2 + y^2 = 1$.
 - A. Maximum 0, minimum -2
 - B. Maximum 2, minimum 0
 - C. Maximum 2, minimum -2
 - D. Maximum $\sqrt{2}$, minimum $-\sqrt{2}$
 - E. Maximum 1, Minimum -1
- 10. Compute the iterated integral

$$\int_0^1 \int_0^1 (x+y)^2 \, dx \, dy$$

- A. $(x+y)^3/3$
- B. 6/7
- **C.** 7/6
- D. 2/3
- E. 5/6

Free Response Questions

- 11. (10 points) The goal of this problem is to determine the maximum and minimum values of the function f(x,y) = xy on the ellipse $4x^2 + y^2 = 8$. Use the Lagrange multiplier method to obtain your answer. Solutions using other methods will receive *no credit*.
 - (a) (3 points) Set up the needed partial derivative equations and the constraint equation for the Lagrange multiplier method.

Solution: In the book's notation

$$f(x,y) = xy$$

and

$$g(x,y) = 4x^2 + y^2 - 8.$$

Since $f_x(x,y) = y$ and $f_y(x,y) = x$, $g_x(x,y) = 8x$, $g_y(x,y) = 2y$, we get

$$y = 8\lambda x$$
 (1 points)

$$x = 2\lambda y$$
 (1 points)

$$4x^2 + y^2 = 8 \tag{1 points}$$

(b) (5 points) Determine the critical points as deduced from the Lagrange Multiplier method.

Solution: From the first equation we get $\lambda = y/8x$. Substituting this into the second equation we get $x = y^2/4x$ or $4x^2 = y^2$. Using the constraint equation we recover $8x^2 = 8$ or $x = \pm 1$. Hence, $y = \pm 2$.

Scoring

- 1 point for eliminating λ or equivalent first step
- 1 point for using the constraint equation to eliminate one of the variables
- 1 point for solving for *x* (or *y*)
- 2 points for a correct listing of the critical points
- (c) (2 points) Identify the absolute maximum and absolute minimum of f(x,y) on the ellipse.

Solution: For the possible critical points we compute

x	y	f(x,y)		
-1	-2	2		
1	-2	-2		
-1	2	-2		
1	2	2		

The absolute maximum is 2 and the absolute minimum is -2.

1 point per correct answer.

0 points total for unsupported answers, even if correct.

- 12. (15 points) Answer the following questions.
 - (a) (5 points) Determine an equation of the tangent plane to the surface

$$x^2 - y^2 + z^2 - 2z = -3$$

at the point P = (1, 2, 2). Give your answer in the form Ax + By + Cz = D.

Solution: The gradient of $f(x,y,z) = x^2 - y^2 + z^2 - 2z$ at (1,2,2) will be normal to the tangent plane. (1 points)

Since $\nabla f(x,y,z) = \langle 2x, -2y, 2z-2 \rangle$ (1 points), a normal vector is $\langle 2, -4, 2 \rangle$ (1 points), and the equation of the plane takes the form 2x-4y+2z=D.(1 points) Substituting (x,y,z)=(1,2,2), we get D=-2 (1 points), so the equation is

$$2x - 4y + 2z = -2$$

or

$$x - 2y + z = 1.$$

(1 points)

(b) (5 points) Determine a linear approximation L(x,y) for the function $g(x,y) = xy^3 + 1$ at the point (1,1).

Solution: First, note that g(1,1) = 2 (1 points).

Next, compute the partial derivatives:

$$g_x(x,y) = y^3$$
, $g_y(x,y) = 3xy^2$ (1 points)

so that

$$g_x(1,1) = 1$$
, $g_y(1,1) = 3$. (1 points)

Hence,

$$L(x,y) = 2 + (x-1) + 3(y-1) = -2 + x + 3y$$
. (2 points)

Students are not required to simplify. Also, it's acceptable for students to find the equation of the tangent plane and solve for z

(c) (5 points) Given that a function f(x,y) is a differentiable function with f(2,3) = 7 and $f_x(2,3) = -2$ and $f_y(2,3) = 5$. Use differentials or a linear approximation to estimate f(1.9,3.1).

Solution: From the given data the linear approximation is

$$L(x,y) = 7 - 2(x-2) + 5(y-3)$$
 (3 points)

so

$$f(1.9,3.1) \simeq L(1.9,3.1) = 7 - 2(-0.1) + 5(0.1) = 7.7. \quad \mbox{(2 points)} \label{eq:force}$$

For L(x, y) (3 points), one point each for the constant term, x - 2 term, and y - 3 term.

For f(1.9,3.1) (2 points), 1 point for the correct expression, and 1 point for a numerically correct answer.

It is also acceptable for students to use differentials $(df = f_x dx + f_y dy)$ to solve this problem.

13. (10 points) (a) (6 points) Suppose that

$$z = u/v$$
, $u = 2s + 3t$, $v = 3s - 2t$.

Using the chain rule for functions of several variables, find $\partial z/\partial s$. Express your final answer in terms of s and t. Solutions which do not use the chain rule will receive *no credit*.

Solution: First, note that

$$\frac{\partial z}{\partial u} = 1/v$$
 (1 points) $\frac{\partial z}{\partial v} = -u/v^2$ (1 points)

$$\frac{\partial u}{\partial s} = 2$$
 (1 points) $\frac{\partial v}{\partial s} = 3$ (1 points)

Hence

$$\frac{\partial z}{\partial s} = 2/v - 3u/v^2 \tag{1 points}$$

or

$$\frac{\partial z}{\partial s} = \frac{-13t}{(3s - 2t)^2} \tag{1 points}$$

(b) (4 points) Find $\partial z/\partial x$ and $\partial z/\partial y$ if the equation

$$x^2 + y^2 + z^2 - 2z = 4$$

defines z implicitly as a function of x and y.

Solution: From the given equation we have

$$2x + 2z \frac{\partial z}{\partial x} - 2\frac{\partial z}{\partial x} = 0$$
$$\frac{\partial z}{\partial x} (2z - 2) = -2x$$
$$\frac{\partial z}{\partial x} = -\frac{2x}{2z - 2} = -\frac{x}{z - 1}$$

(2 points) and similarly

$$2y + 2z \frac{\partial z}{\partial y} - 2 \frac{\partial z}{\partial y} = 0$$
$$\frac{\partial z}{\partial y} = -\frac{2y}{2z - 2} = -\frac{y}{z - 1}$$

(2 points)

14. (15 points) The goal of this problem is to find the absolute maximum and minimum values of the function

$$f(x,y) = x^2 + 4y^2 - 2x - 8y + 10$$

in the closed triangular domain shown at the left.

(a) (4 points) Find the critical point(s) of *f* and classify the point(s) as local maxima, local minima, or saddles. Be sure to find *all* critical points, whether inside *D* or outside *D*. Find the value of *f* at the critical point(s).

Solution: Since $f_x(x,y) = 2x - 2$ and $f_y(x,y) = 8y - 8$ there is a single critical point at x = 1, y = 1. We have $f_{xx}(x,y) = 2$, $f_{yy}(x,y) = 8$, $f_{xy} = 0$ so D = 16 and this critical point is a local minimum. We have f(1,1) = 5.

Scoring:

2 point for finding critical points correctly

1 point for evaluating second partials

1 point for using D to identify (1,1) as a local minimum

1 point for evaluating f

(b) (3 points) Find the maximum and minimum of f(x, 0) for $0 \le x \le 3$.

Solution: $g_1(x) = f(x,0) = x^2 - 2x + 10$ has a critical point at x = 1. Evaluate

$g_1(0)$	10
$g_1(1)$	9
$g_1(3)$	13

The minimum value is 9 and the maximum value is 13.

Scoring:

1 point for finding the critical point

1 point for correct evaluations at 0, 1, 3

1 point for identifying the maximum and minimum

(c) (3 points) Find the minimum and maximum value of f(3, y) for $0 \le y \le 3$.

Solution: $g_2(y) = f(3,y) = 4y^2 - 8y + 13$ and has a critical point at y = 1.

$g_{2}(0)$	13
$g_2(1)$	9
$g_2(3)$	25

The minimum value is 9 and the maximum value is 25.

Scoring:

- 1 point for finding the critical point
- 1 point for correct evaluations at 0, 1, 3
- 1 point for identifying the maximum and minimum
- (d) (3 points) Find the minimum and maximum values of f(x, x) for $0 \le x \le 3$.

Solution: $g_3(x) = f(x, x) = 5x^2 - 10x + 10$ The derivative is 10x - 10 so the only critical point is at x = 1. Thus:

$g_{3}(0)$	10
$g_3(1)$	5
$g_{3}(3)$	25

The minimum value is 5 and the maximum value is 25

Scoring:

- 1 point for finding the critical point
- 1 point for correct evaluations at 0, 1, 3
- 1 point for identifying the maximum and minimum
- (e) (2 points) State the maximum and minimum values of f on D.

Solution:

Maximum Value: 5 (1 points)

Minimum Value: 25 (1 points)