Quiz 3

Name: \qquad Section and/or TA: \qquad
Answer all questions in a clear and concise manner. Unsupported answers will receive no credit.

1. (2 points) The position vector of a particle is given by

$$
\mathbf{r}(t)=\left\langle\frac{1}{2} t^{2}, 4 t, \frac{1}{2} t^{2}-8 t\right\rangle
$$

(a) (1 point) What is the velocity vector of the particle?

Solution: The velocity vector of the particle can be found by taking the derivative of the position vector:

$$
\mathbf{v}(t)=\mathbf{r}^{\prime}(t)=\langle t, 4, t-8\rangle
$$

(b) (1 point) What is the speed of the particle?

Solution: The speed of the particle is the magnitude of the velocity vector:

$$
s(t)=|\mathbf{v}(t)|=\sqrt{(t)^{2}+(4)^{2}+(t-8)^{2}}=\sqrt{2 t^{2}-16 t+80}
$$

2. (2 points) Using $\mathbf{r}(t)$ from problem 1, when is the minimum speed achieved?

Solution: To find when the speed is minimized we need to find the critical points of $s(t)$. The derivative $s^{\prime}(t)$ is:

$$
s^{\prime}(t)=\frac{1}{2}(4 t-16)\left(2 t^{2}-16 t+80\right)^{-1 / 2}=\frac{(2 t-8)}{\sqrt{2} \sqrt{t^{2}-8 t+40}}
$$

Since the quadratic $\left(t^{2}-8 t+40\right)$ is irreducible (doesn't factor as the product of linear polynomials with real coefficients) $s^{\prime}(t)$ is always defined. Hence the only critical points occur when $s^{\prime}(t)=0$, which is if and only if $2 t-8=0$. This occurs when $t=4$. Since $2 t-8<0$ for $t<4$ and $2 t-8>0$ for $t>4$, we see that $t=4$ achieves the minimum speed.

