Quiz 4

Name: \qquad Section and/or TA: \qquad
Answer all questions in a clear and concise manner. Unsupported answers will receive no credit.

1. (2 points) Let $f(x, y)=\frac{1}{\sqrt{x-y}}$.
(a) (1 point) Sketch the domain of $f(x, y)$.

(b) (1 point) Describe the level curves of $f(x, y)$.

Solution: The level curves of $f(x, y)$ have the form $k=\frac{1}{\sqrt{x-y}}$ or equivalently $y=x-k^{-2}$. Thus the level curves are parallel lines in the $x y$-plane with slope 1 and y -intercept $-k^{-2}$.
2. (2 points) Let $u(x, y)=\ln \left(x^{2}+y^{2}\right)$. Show that $u_{x x}+u_{y y}=0$.

Solution:

$$
\begin{aligned}
u_{x} & =\frac{2 x}{x^{2}+y^{2}} & u_{y} & =\frac{2 y}{x^{2}+y^{2}} \\
u_{x x} & =\frac{2\left(x^{2}+y^{2}\right)-2 x(2 x)}{\left(x^{2}+y^{2}\right)^{2}} & u_{y y} & =\frac{2\left(x^{2}+y^{2}\right)-2 y(2 y)}{x^{2}+y^{2}} \\
& =\frac{-2 x^{2}+2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}} & & =\frac{2 x^{2}-2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

Thus,

$$
u_{x x}+u_{y y}=\frac{-2 x^{2}+2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}+\frac{2 x^{2}-2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=0
$$

