Quiz 5

Name: \qquad Section and/or TA: \qquad
Answer all questions in a clear and concise manner. Unsupported answers will receive no credit.

1. (2 points) Let $f(x, y)=x \cos (y)-2 x y$.
(a) (1 point) Find the linear approximation of f at the point $(1,0,1)$.

Solution: The linearization of f at the point $(1,0,1)$ is given by $f_{x}(1,0)(x-$ $1)+f_{y}(1,0) y+1$. Taking the x-partial of $f, f_{x}(x, y)=\cos (y)-2 y$. And taking the y-partial of $f, f_{y}(x, y)=-x \sin (y)-2 x$. Evaluating each of these at $(1,0)$ gives $f_{x}(1,0)=1$ and $f_{y}(1,0)=-2$. Thus the linearization is $(x-$ 1) $-2 y+1=x-2 y$.
(b) (1 point) Use your answer from part (a) to approximate the number $f(0.9,-0.1)$.

Solution: We evaluate the linearization, $x-2 y$, at $x=0.9$ and $y=-0.1$, giving $0.9-2(-0.1)=1.1$.
2. (2 points) Find $\partial z / \partial x$ and $\partial z / \partial y$ assuming z is defined implicitly as a function of x and y as

$$
x^{3} y+3 y^{2}-4 z^{2}=0
$$

Solution: To find $\partial z / \partial x$, take the x-partial of both sides of the above equation, using the chain rule on z since it is a function of x. This gives $3 x^{2} y-8 z(\partial z / \partial x)=$ 0 . Now solve for $\partial z / \partial x$,

$$
\begin{aligned}
3 x^{2} y-8 z \frac{\partial z}{\partial x} & =0 \\
-8 z \frac{\partial z}{\partial x} & =-3 x^{2} y \\
\frac{\partial z}{\partial x} & =\frac{3 x^{2} y}{8 z}
\end{aligned}
$$

To find $\partial z / \partial y$, similarly take the y-partial of both sides to obtain $x^{3}+6 y-8 z \partial z / \partial y=$ 0 . Solve this for $\partial z / \partial y$,

$$
\begin{aligned}
x^{3}+6 y-8 z \frac{\partial z}{\partial y} & =0 \\
-8 z \frac{\partial z}{\partial y} & =-x^{3}-6 y \\
\frac{\partial z}{\partial y} & =\frac{x^{3}+6 y}{8 z}
\end{aligned}
$$

