Quiz 5

Name:

Section and/or TA: _____

Answer all questions in a clear and concise manner. Unsupported answers will receive *no credit*.

- 1. (2 points) Let $f(x, y) = x \cos(y) 2xy$.
 - (a) (1 point) Find the linear approximation of f at the point (1, 0, 1).

Solution: The linearization of *f* at the point (1,0,1) is given by $f_x(1,0)(x-1) + f_y(1,0)y + 1$. Taking the *x*-partial of *f*, $f_x(x,y) = \cos(y) - 2y$. And taking the *y*-partial of *f*, $f_y(x,y) = -x\sin(y) - 2x$. Evaluating each of these at (1,0) gives $f_x(1,0) = 1$ and $f_y(1,0) = -2$. Thus the linearization is (x-1) - 2y + 1 = x - 2y.

(b) (1 point) Use your answer from part (a) to approximate the number f(0.9, -0.1).

Solution: We evaluate the linearization, x - 2y, at x = 0.9 and y = -0.1, giving 0.9 - 2(-0.1) = 1.1.

2. (2 points) Find $\partial z / \partial x$ and $\partial z / \partial y$ assuming *z* is defined implicitly as a function of *x* and *y* as

$$x^3y + 3y^2 - 4z^2 = 0$$

Solution: To find $\partial z/\partial x$, take the *x*-partial of both sides of the above equation, using the chain rule on *z* since it is a function of *x*. This gives $3x^2y - 8z(\partial z/\partial x) = 0$. Now solve for $\partial z/\partial x$,

$$3x^{2}y - 8z\frac{\partial z}{\partial x} = 0$$
$$-8z\frac{\partial z}{\partial x} = -3x^{2}y$$
$$\frac{\partial z}{\partial x} = \frac{3x^{2}y}{8z}$$

To find $\partial z / \partial y$, similarly take the *y*-partial of both sides to obtain $x^3 + 6y - 8z\partial z / \partial y = 0$. Solve this for $\partial z / \partial y$,

$$x^{3} + 6y - 8z \frac{\partial z}{\partial y} = 0$$
$$-8z \frac{\partial z}{\partial y} = -x^{3} - 6y$$
$$\frac{\partial z}{\partial y} = \frac{x^{3} + 6y}{8z}$$