Quiz 6

Name: \qquad Section and/or TA: \qquad
Answer all questions in a clear and concise manner. Unsupported answers will receive no credit.

1. (2 points) The goal of this question is to compute the double integral

$$
\int_{0}^{3} \int_{x^{2}}^{9} x^{3} e^{y^{3}} d y d x
$$

(a) (1 point) First reverse the order of integration. That is, find $a, b, g_{1}(x)$ and $g_{2}(x)$ such that

$$
\int_{0}^{3} \int_{x^{2}}^{9} x^{3} e^{y^{3}} d y d x=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} x^{3} e^{y^{3}} d x d y
$$

Hint: It will help to sketch the region of integration.

(b) (1 point) Use your answer from part (a) to compute the double integral. You should obtain a numerical answer but you don't need to simplify or evaluate with a calculator.

Solution: From part (a), we have

$$
\begin{aligned}
\int_{0}^{3} \int_{x^{2}}^{9} x^{3} e^{y^{3}} d y d x & =\int_{0}^{9} \int_{0}^{\sqrt{y}} x^{3} e^{y^{3}} d x d y \\
& =\int_{0}^{9}\left[\frac{x^{4}}{4} e^{y^{3}}\right]_{x=0}^{x=\sqrt{y}} d y \\
& =\frac{1}{4} \int_{0}^{9}\left[(\sqrt{y})^{4} e^{y^{3}}-0\right] d y \\
& =\frac{1}{4} \int_{0}^{9} y^{2} e^{y^{3}} d y \\
& =\left(\frac{1}{4}\right)\left(\frac{1}{3}\right)\left[e^{y^{3}}\right]_{y=0}^{y=9} \\
& =\frac{1}{12}\left(e^{729}-1\right)
\end{aligned}
$$

2. (2 points) Compute the double integral

$$
\int_{1}^{2} \int_{1}^{x} \frac{x^{2}}{y^{2}} d y d x
$$

Solution:

$$
\begin{aligned}
\int_{1}^{2} \int_{1}^{x} \frac{x^{2}}{y^{2}} d y d x & =\int_{1}^{2}\left[\frac{-x^{2}}{y}\right]_{y=1}^{y=x} d x \\
& =\int_{1}^{2}\left[\frac{-x^{2}}{x}\right]-\left[\frac{-x^{2}}{1}\right] d x \\
& =\int_{1}^{2}\left(-x+x^{2}\right) d x \\
& =\left[\frac{-x^{2}}{2}+\frac{x^{3}}{3}\right]_{1}^{2} \\
& =\left(\frac{-4}{2}+\frac{8}{3}\right)-\left(\frac{-1}{2}+\frac{1}{3}\right) \\
& =\frac{5}{6}
\end{aligned}
$$

