Quiz 9

Name: \qquad Section and/or TA: \qquad
Answer all questions in a clear and concise manner. Unsupported answers will receive no credit.

1. In this problem we will evaluate

$$
\iint_{R} x y d x d y
$$

where R is the parallelogram in the $x y$-plane with vertices $(0,0),(4,1),(2,2)$, and $(6,3)$.
(a) (2 points) Consider the transformation $T(u, v)=(x, y)$:

$$
\begin{aligned}
& x=4 u+2 v \\
& y=u+2 v .
\end{aligned}
$$

Show that the region in the $u v$-plane corresponding to the parallelogram R under the transformation T is the square $[0,1] \times[0,1]$.

Solution: Note that

$$
\begin{aligned}
& T(0,0)=(0,0) \\
& T(1,0)=(4,1) \\
& T(0,1)=(2,2) \\
& T(1,1)=(6,3)
\end{aligned}
$$

So the corresponding region in the $u v$ - plane is $[0,1] \times[0,1]$.
(b) (1 point) Calculate the Jacobian of the transformation T.

Solution: The Jacobian is the matrix

$$
\left(\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} \\
\frac{\partial x}{\partial v} & \frac{\partial y}{\partial v}
\end{array}\right)=\left(\begin{array}{ll}
4 & 1 \\
2 & 2
\end{array}\right)
$$

Its determinant is $(4)(2)-(2)(1)=6$.
(c) (2 points) Evaluate the integral $\iint_{R} x y d x d y$ by making the above change of variables.

Solution: Using the change of variables we can write the integral as

$$
\int_{0}^{1} \int_{0}^{1}(4 u+2 v)(u+2 v)|6| d u d v
$$

$$
\begin{gathered}
=6 \int_{0}^{1} \int_{0}^{1} 4 u^{2}+10 u v+4 v^{2} d u d v \\
=6 \int_{0}^{1} \frac{4}{3}+5 v+4 v^{2} d v \\
=6\left(\frac{4}{3}+\frac{5}{2}+\frac{4}{3}\right) \\
=6\left(\frac{31}{6}\right) \\
=31
\end{gathered}
$$

