MA 213 Worksheet \#3

Section 12.3

1 Find $\mathbf{a} \cdot \mathbf{b}$ for the following descriptions of \mathbf{a} and \mathbf{b}.
$12.3 .7 \quad \mathbf{a}=2 \mathbf{i}+\mathbf{j}, \quad \mathbf{b}=\mathbf{i}-\mathbf{j}+\mathbf{k}$
12.3.9 $\quad|\mathbf{a}|=7, \quad|\mathbf{b}|=4 \quad$ the angle between \mathbf{a} and \mathbf{b} is $\pi / 6$

2 12.3.19 Find the angle between the vectors $\mathbf{a}=4 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$ and $\mathbf{b}=2 \mathbf{i}-\mathbf{k}$.

3 12.3.23 Determine whether the vectors $\mathbf{u}=9 \mathbf{i}-6 \mathbf{j}+3 \mathbf{k}$ and $\mathbf{v}=-6 \mathbf{i}+4 \mathbf{j}-2 \mathbf{k}$ are orthogonal, parallel, or neither.

4 12.3.25 Use vectors to decide whether the triangle with vertices $P(1,-3,-2), Q(2,0,-4)$, and $R(6,-2,-5)$ is right angled.

5 12.3.41 Find the scalar and vector projections of \mathbf{b} onto \mathbf{a}.

$$
\mathbf{a}=\langle 4,7,-4\rangle, \quad \mathbf{b}=\langle 3,-1,1\rangle
$$

6 12.3.49 Find the work done by a force $\mathbf{F}=8 i-6 j+9 k$ that moves an object from the point $(0,10,8)$ to the point $(6,12,20)$ along a straight line. The distance is measured in meters and the force in newtons.

Additional Recommended Problems

$\mathbf{7}$ 12.3.25 Find a unit vector that is orthogonal to both $\mathbf{i}+\mathbf{j}$ and $\mathbf{i}+\mathbf{k}$.

8 12.3.30 Find the acute angle between the lines.

$$
x+2 y=7, \quad 5 x-y=2
$$

9 12.3.31 Find the acute angles between the curves at their points of intersection.

$$
y=x^{2}, \quad y=x^{3}
$$

10 12.3.45 Show that the vector $\operatorname{orth}_{\mathbf{a}} \mathbf{b}=\mathbf{b}-\operatorname{proj}_{\mathbf{a}} \mathbf{b}$ is orthogonal to \mathbf{a}.

