MA 213 Worksheet \#18

Section 15.9

1 15.9.1 Find the Jacobian of the transformation:

$$
x=2 u+v, \quad y=4 u-v
$$

2 15.9.9 Let S be the triangular region with vertices $(0,0),(1,1),(0,1)$. Find the image of S under the the transformation

$$
x=u^{2}, \quad y=v
$$

3 15.9.17 Evaluate the integral $\iint_{R} x^{2} d A$, where R is the region bounded by the ellipse $9 x^{2}+4 y^{2}=$ 36 using the transformation $x=2 u, y=3 v$.

4 15.9.23 Evaluate the integral by making an appropriate change of variables: $\iint_{R} \frac{x-2 y}{3 x-y} d A$, where R is the parallelogram enclosed by the lines $x-2 y=0, x-2 y=4,3 x-y=1$, and $3 x-y=$ 8.

Additional Recommended Problems

5 Find the Jacobian of the transformations
(a) 15.9.3 $\quad x=s \cos t, \quad y=s \sin t$
(b) $15.9 .5 x=u v, \quad y=v w, \quad z=w u$.

6 15.9.15 Evaluate the integral $\iint_{R}(x-3 y) d A$, where R is the triangular region with vertices $(0,0),(2,1)$, and $(1,2)$, using the transformation $x=2 u+v, \quad y=u+2 v$.

7 15.9.21
(a) Evaluate $\iiint_{E} d V$ where E is the solid enclosed by the ellipsoid $x^{2} / a^{2}+y^{2} / b^{2}+z^{2} / c^{2}=1$. Use the transformation $x=a u, y=b v, z=c w$.
(b) The earth is not a perfect sphere; rotation has resulted in flattening at the poles. So the shape can be approximated by an ellipsoid with $a=b=6378 \mathrm{~km}$ and $c=6356 \mathrm{~km}$. Use part (a) to estimate the volume of the earth.

8 15.9.25 Evaluate the integral by making an appropriate change of variables: $\iint_{R} \cos \left(\frac{y-x}{y+x}\right) d A$, where R is the trapezoidal region with vertices $(1,0),(2,0),(0,2)$, and $(0,1)$.

