MA 213 Worksheet \#19

Section 16.1

1 16.1.11-14 Match the vector fields, \mathbf{F}, with the plots below. Give reasons for your choices.
(a) $\mathbf{F}(x, y)=\langle x,-y\rangle$
(b) $\mathbf{F}(x, y)=\langle y, x-y\rangle$
(c) $\mathbf{F}(x, y)=\langle y, y+2\rangle$
(d) $\mathbf{F}(x, y)=\langle\cos (x+y), x\rangle$

2 16.1.23 Find the gradient vector field of $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$

3 16.1.25 Let $f(x, y)=\frac{1}{2}(x-y)^{2}$. Find the gradient vector field, ∇f, of f and sketch it.

4 16.1.33 A particle moves in a velocity field $\mathbf{V}(x, y)=\left\langle x^{2}, x+y^{2}\right\rangle$. If it is at position $(2,1)$ and time $t=3$, estimate its location at time $t=3.01$.

5 16.1.15-18 Match the vector fields, F, with the plots below. Give reasons for your choices.
(a) $\mathbf{F}(x, y, z)=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$
(b) $\mathbf{F}(x, y, z)=\mathbf{i}+2 \mathbf{j}+z \mathbf{k}$
(c) $\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+3 \mathbf{k}$
(d) $\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$

6 16.1.29-32 Match the functions, f, with the plots of their gradient vector fields below. Give reasons for your choices.
(a) $f(x, y)=x^{2}+y^{2}$
(b) $f(x, y)=x(x+y)$
(c) $f(x, y)=(x+y)^{2}$
(d) $f(x, y)=\sin \sqrt{x^{2}+y^{2}}$

