MA 213 Worksheet #20 Section 16.2

- **1** Evaluate the line integral, where C is the given curve.
 - (a) $16.2.1 \int_C y ds$, $C: x = t^2$, y = 2t, $0 \le t \le 3$. (b) $16.2.5 \int_C (x^2y + \sin x) dy$, C is the arc of the parabola $y = x^2$ from (0,0) to (π, π^2) .
- **2** Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is given by the function $\mathbf{r}(t)$.
 - (a) 16.2.19 $\mathbf{F}(x, y) = xy^2 \mathbf{i} x^2 \mathbf{j}, \quad \mathbf{r}(t) = t^3 \mathbf{i} + t^2 \mathbf{j}, \ 0 \le t \le 1.$
 - (b) 16.2.22 $\mathbf{F}(x, y, z) = x\mathbf{i} + y\mathbf{j} + xy\mathbf{k}$, $\mathbf{r}(t) = \cos t\mathbf{i} + \sin t\mathbf{j} + t\mathbf{k}$, $0 \le t \le \pi$.
- **3** 16.2.39 Find the work done by the force field $\mathbf{F}(x, y) = x\mathbf{i} + (y+2)\mathbf{j}$ in moving an object along an arch of the cycloid: $\mathbf{r}(t) = (t \sin t)\mathbf{i} + (1 \cos t)\mathbf{j}, \quad 0 \le t \le 2\pi.$
- 4 16.2.43 The position of an object with mass m at time t is $\mathbf{r}(t) = at^2\mathbf{i} + bt^3\mathbf{j}, \ 0 \le t \le 1.$
 - (a) What is the force acting on the object at time t?
 - (b) What is the work done by the force during the time interval $0 \le t \le 1$?

Additional Recommended Problems

- **5** Evaluate the line integral, where C is the given curve.
 - (a) $16.2.8 \int_C x^2 dx + y^2 dy$, C consists of the arc of the circle $x^2 + y^2 = 4$ from (2,0) to (0,2) followed by the line segment from (0,2) to (4,3).
 - (b) $16.2.10 \int_C y^2 z ds$, C is the line segment from (3, 1, 2) to (1, 2, 5). (c) $16.2.14 \int_C y dx + z dy + x dz$, $C : x = \sqrt{t}, y = t, z = t^2, 1 \le t \le 4$.
- **6** 16.2.33 A thin wire is bent in the shape of a semicircle $x^2 + y^2 = 4$, $x \ge 0$. If the linear density is a constant k, find the mass and center of mass of the wire.
- 7 16.2.50 If C is a smooth curve given by a vector function $\mathbf{r}(t)$, $a \le t \le b$, show that

$$\int_C \mathbf{r} \cdot d\mathbf{r} = \frac{1}{2} \left[|\mathbf{r}(b)|^2 - |\mathbf{r}(a)|^2 \right].$$