MA 213 Worksheet \#20

Section 16.2

1 Evaluate the line integral, where C is the given curve.
(a) 16.2.1 $\int_{C} y d s, \quad C: x=t^{2}, y=2 t, 0 \leq t \leq 3$.
(b) 16.2.5 $\int_{C}\left(x^{2} y+\sin x\right) d y, \quad C$ is the arc of the parabola $y=x^{2}$ from $(0,0)$ to $\left(\pi, \pi^{2}\right)$.

2 Evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is given by the function $\mathbf{r}(t)$.
(a) 16.2.19 $\mathbf{F}(x, y)=x y^{2} \mathbf{i}-x^{2} \mathbf{j}, \quad \mathbf{r}(t)=t^{3} \mathbf{i}+t^{2} \mathbf{j}, \quad 0 \leq t \leq 1$.
(b) 16.2.22 $\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+x y \mathbf{k}, \quad \mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}, 0 \leq t \leq \pi$.

3 16.2.39 Find the work done by the force field $\mathbf{F}(x, y)=x \mathbf{i}+(y+2) \mathbf{j}$ in moving an object along an arch of the cycloid: $\mathbf{r}(t)=(t-\sin t) \mathbf{i}+(1-\cos t) \mathbf{j}, \quad 0 \leq t \leq 2 \pi$.

4 16.2.43 The position of an object with mass m at time t is $\mathbf{r}(t)=a t^{2} \mathbf{i}+b t^{3} \mathbf{j}, \quad 0 \leq t \leq 1$.
(a) What is the force acting on the object at time t ?
(b) What is the work done by the force during the time interval $0 \leq t \leq 1$?

Additional Recommended Problems

5 Evaluate the line integral, where C is the given curve.
(a) 16.2.8 $\int_{C} x^{2} d x+y^{2} d y, C$ consists of the arc of the circle $x^{2}+y^{2}=4$ from $(2,0)$ to $(0,2)$ followed by the line segment from $(0,2)$ to $(4,3)$.
(b) 16.2.10 $\int_{C} y^{2} z d s, C$ is the line segment from $(3,1,2)$ to $(1,2,5)$.
(c) 16.2.14 $\int_{C} y d x+z d y+x d z, C: x=\sqrt{t}, y=t, z=t^{2}, 1 \leq t \leq 4$.

6 16.2.33 A thin wire is bent in the shape of a semicircle $x^{2}+y^{2}=4, x \geq 0$. If the linear density is a constant k, find the mass and center of mass of the wire.

7 16.2.50 If C is a smooth curve given by a vector function $\mathbf{r}(t), a \leq t \leq b$, show that

$$
\int_{C} \mathbf{r} \cdot d \mathbf{r}=\frac{1}{2}\left[|\mathbf{r}(b)|^{2}-|\mathbf{r}(a)|^{2}\right] .
$$

