MA 213 Worksheet \#21

Sections 16.3 and 16.4

1 16.3.3 Determine whether or not \mathbf{F} is a conservative vector field. If it is, find a function f such that $\mathbf{F}=\nabla f$.
16.3.3 $\quad \mathbf{F}(x, y)=\left(x y+y^{2}\right) \mathbf{i}+\left(x^{2}+2 x y\right) \mathbf{j}$.
16.3.7 $\quad \mathbf{F}(x, y)=\left(y e^{x}+\sin y\right) \mathbf{i}+\left(e^{x}+x \cos y\right) \mathbf{j}$

2 16.3.12 Find a function f such that $\mathbf{F}=\nabla f$ and evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for

$$
\mathbf{F}(x, y)=\left(3+2 x y^{2}\right) \mathbf{i}+2 x^{2} y \mathbf{j},
$$

and C is the arc of the hyperbola $y=1 / x$ from $(1,1)$ to $\left(4, \frac{1}{4}\right)$.
3 16.3.19 Show the line integral $\int_{C} 2 x e^{-y} d x+\left(2 y-x^{2} e^{-y}\right)$, where C is any path from $(1,0)$ to $(2,1)$, is independent of path and evaluate the integral.
4 16.4.1 Evaluate the line integral $\oint_{C} y^{2} d x+x^{2} y d y$ where C is the rectangle with vertices $(0,0),(5,0),(5,4)$, and $(0,4)$ by two methods:
(i) directly and
(ii) using Green's Theorem.

5 16.4.7 Use Green's Theorem to evaluate $\oint_{C}\left(y+e^{\sqrt{x}}\right) d x+\left(2 x+\cos y^{2}\right) d y$ where C is the boundary of the region enclosed by the parabolas $y=x^{2}$ and $x=y^{2}$.
6 16.4.13 Use Green's Theorem to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}=\langle y-\cos y, x \sin y\rangle$ and C is the circle $(x-3)^{2}+(y+4)^{2}=4$ oriented clockwise.

Additional Recommended Problems

7 16.3.15 Find a function f such that $\mathbf{F}=\nabla f$ and evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for

$$
\mathbf{F}(x, y, z)=y z \mathbf{i}+x z \mathbf{j}+(x y+2 z) \mathbf{k}
$$

and C is the line segment from $(1,0,-2)$ to $(4,6,3)$.
8 16.3.23 Find the work done by the force field $\mathbf{F}(x, y)=x^{3} \mathbf{i}+y^{3} \mathbf{j}$ in moving an object from $P(1,0)$ to $Q(2,2)$.
9 16.4.11 Use Green's Theorem to evaluate $\oint_{C}\langle y \cos c-x y, x y+x \cos x\rangle \cdot d \mathbf{r}$, where C is the triangle from $(0,0)$ to $(0,4)$ to $(2,0)$ to $(0,0)$. Be sure to check the orientation of the curve before applying the theorem.
10 16.4.17 Use Green's Theorem to find the work done by the force $\mathbf{F}(x, y)=x(x+y) \mathbf{i}+x y^{2} \mathbf{j}$ in moving a particle from the origin along the x-axis to $(1,0)$, then along the line segment to $(0,1)$ and then back to the origin along the y-axis.

