MA 213 Worksheet #21

Sections 16.3 and 16.4

- 1 16.3.3 Determine whether or not **F** is a conservative vector field. If it is, find a function f such that $\mathbf{F} = \nabla f$.
 - 16.3.3 $\mathbf{F}(x,y) = (xy+y^2)\mathbf{i} + (x^2+2xy)\mathbf{j}.$ 16.3.7 $\mathbf{F}(x,y) = (ye^x + \sin y)\mathbf{i} + (e^x + x\cos y)\mathbf{j}$
- **2** 16.3.12 Find a function f such that $\mathbf{F} = \nabla f$ and evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ for $\mathbf{F}(\mathbf{r}) = (2 + 2 2)^2 + 2 2^2$

$$\mathbf{F}(x,y) = (3+2xy^2)\mathbf{i} + 2x^2y\mathbf{j},$$

and C is the arc of the hyperbola y = 1/x from (1, 1) to $(4, \frac{1}{4})$.

- **3** 16.3.19 Show the line integral $\int_C 2xe^{-y}dx + (2y x^2e^{-y})$, where C is any path from (1,0) to (2,1), is independent of path and evaluate the integral.
- **4** 16.4.1 Evaluate the line integral $\oint_C y^2 dx + x^2 y dy$ where C is the rectangle with vertices (0,0), (5,0), (5,4), and (0,4) by two methods:
 - (i) directly and
 - (ii) using Green's Theorem.
- **5** 16.4.7 Use Green's Theorem to evaluate $\oint_C (y+e^{\sqrt{x}}) dx + (2x+\cos y^2) dy$ where C is the boundary of the region enclosed by the parabolas $y = x^2$ and $x = y^2$.
- 6 16.4.13 Use Green's Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = \langle y \cos y, x \sin y \rangle$ and C is the circle $(x-3)^2 + (y+4)^2 = 4$ oriented clockwise.

Additional Recommended Problems

7 16.3.15 Find a function f such that $\mathbf{F} = \nabla f$ and evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ for

$$\mathbf{F}(x, y, z) = yz\mathbf{i} + xz\mathbf{j} + (xy + 2z)\mathbf{k},$$

and C is the line segment from (1, 0, -2) to (4, 6, 3).

- 8 16.3.23 Find the work done by the force field $\mathbf{F}(x, y) = x^3 \mathbf{i} + y^3 \mathbf{j}$ in moving an object from P(1, 0) to Q(2, 2).
- **9** 16.4.11 Use Green's Theorem to evaluate $\oint_C \langle y \cos c xy, xy + x \cos x \rangle \cdot d\mathbf{r}$, where *C* is the triangle from (0,0) to (0,4) to (2,0) to (0,0). Be sure to check the orientation of the curve before applying the theorem.
- 10 16.4.17 Use Green's Theorem to find the work done by the force $\mathbf{F}(x, y) = x(x+y)\mathbf{i} + xy^2\mathbf{j}$ in moving a particle from the origin along the x-axis to (1, 0), then along the line segment to (0, 1) and then back to the origin along the y-axis.