MA 213 Worksheet \#22

Section 16.5

1 Find (1) the curl and (2) the divergence of the vector field.
16.5.1 $\quad \mathbf{F}(x, y, z)=x y^{2} z^{2} \mathbf{i}+x^{2} y z^{2} \mathbf{j}+x^{2} y^{2} z \mathbf{k}$.
16.5.7 $\quad \mathbf{F}(x, y, z)=\left\langle e^{x} \sin y, e^{y} \sin z, e^{z} \sin x\right\rangle$

2 16.5.12 Let f be a scalar field and \mathbf{F} a vector field. State whether each expression is meaningful. If no, explain why. If so, state whether is is a scalar field or vector field.
(a) $\operatorname{curl}(\operatorname{curl} \mathbf{F})$
(d) $(\operatorname{grad} f) \times(\operatorname{div} \mathbf{F})$
(b) $\operatorname{div}(\operatorname{div} \mathbf{F})$
(e) $\operatorname{grad}(\operatorname{div} f)$
(c) $\operatorname{curl}(\operatorname{grad} f)$
(f) $\operatorname{div}(\operatorname{curl}(\operatorname{grad} f))$

3 16.5.15 Use curl \mathbf{F} to determine whether or not the vector field $\mathbf{F}(x, y, z)=z \cos (y) \mathbf{i}+x z \sin (y) \mathbf{j}+$ $x \cos (y) \mathbf{k}$ is conservative. If it is conservative, find a function f such that $\mathbf{F}=\nabla f$.

4 16.5.23 Let \mathbf{F} and \mathbf{G} be vector fields. Prove the identity, assuming that the appropriate partial derivatives exist and are continuous.

$$
\operatorname{div}(\mathbf{F}+\mathbf{G})=\operatorname{div} \mathbf{F}+\operatorname{div} \mathbf{G}
$$

Additional Recommended Problems

5 16.6.17 Use curl \mathbf{F} to determine whether or not the vector field $\mathbf{F}(x, y, z)=e^{y z} \mathbf{i}+x z e^{y z} \mathbf{j}+x y e^{y z} \mathbf{k}$ is conservative. If it is conservative, find a function f such that $\mathbf{F}=\nabla f$.

6 16.5.25 Prove the identity, assuming that the appropriate partial derivatives exists and are continuous.

$$
\operatorname{div}(f \mathbf{F})=f \operatorname{div} \mathbf{F}+\mathbf{F} \cdot \nabla f
$$

7 16.5.31 Let $\mathbf{r}=\langle x, y, z\rangle$ and $r=|\mathbf{r}|$. Verify each identity.
(a) $\nabla \mathbf{r}=\mathbf{r} / r$
(c) $\nabla(1 / r)=-\mathbf{r} / r^{3}$
(b) $\nabla \times \mathbf{r}=\mathbf{0}$
(d) $\nabla \ln r=\mathbf{r} / r^{2}$

