MA 213 Worksheet \#23

Section 16.6

1 16.6.5 Identify the surface with the vector equation:

$$
\mathbf{r}(s, t)=\langle s \cos t, s \sin t, s\rangle
$$

2 16.6.21 Find a parametric representation for the part of the hyperboloid $4 x^{2}-4 y^{2}-z^{2}=4$ that lies in front of the $y z$-plane.

3 16.6.37 Find an equation of the tangent plane to the parametric surface

$$
\mathbf{r}(u, v)=\left\langle u^{2}, 2 u \sin v, u \cos v\right\rangle
$$

at the point $u=1, v=0$.

4 Find the surface area.
16.6.47 The part of the paraboloid $y=x^{2}+z^{2}$ that lies within the cylinder $x^{2}+z^{2}=16$.
16.6.4 9 The surface with parametric equations $x=u^{2}, y=u v, z=\frac{1}{2} v^{2} ; 0 \leq u \leq 1, \quad 0 \leq v \leq 2$.

Additional Recommended Problems

5 16.6.3 Identify the surface with the given vector equation:

$$
\mathbf{r}(u, v)=(u+v) \mathbf{i}+(3-v) \mathbf{j}+(1+4 u+5 v) \mathbf{k}
$$

6 16.6.23 Find a parametric representation for the part of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies above the cone $z=\sqrt{x^{2}+y^{2}}$.

7 16.6.33 Find an equation of the tangent plane to the given parametric surface at the specified point.

$$
x=u+v, \quad y=3 u^{2}, \quad z=u-v ; \quad(2,3,0)
$$

8 16.6.59
(a) Show that the parametric equations $x=a \sin u \cos v, y=b \sin u \sin v, z=c \cos u$ for $0 \leq u \leq \pi$ and $0 \leq v \leq 2 \pi$, represent a ellipsoid.
(b) Set up, but do not evaluate, a double integral for the surface area of the ellipsoid in part (a).

