MA 213 Worksheet \#24

Section 16.7

1 16.7.5 Evaluate the surface integral $\iint_{S}(x+y+z) d S$ where S is the parallelogram with parametric equations $x=u+v, y=u-v, z=1+2 u+v$ where $0 \leq u \leq 2$ and $0 \leq v \leq 1$.

2 16.7.19 Evaluate the surface integral

$$
\iint_{S} x z d S
$$

where S is the boundary of the region enclosed by the cylinder $y^{2}+z^{2}=9$ and the planes $x=0$ and $x+y=5$.

3 16.7.31 Evaluate the surface integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ where \mathbf{F} is the vector field

$$
\mathbf{F}(x, y, z)=\left\langle x^{2}, y^{2}, z^{2}\right\rangle
$$

and the oriented surface S is the boundary of the solid half-cylinder $0 \leq z \leq \sqrt{1-y^{2}}, 0 \leq x \leq 2$. (In other words, find the flux of \mathbf{F} across S.)

Additional Recommended Problems

4 16.6.11 Evaluate the surface integral

$$
\iint_{S} x d S
$$

where S is the triangular region with vertices $(1,0,0),(0,-2,0)$, and $(0,0,4)$.

5 16.7.21 Evaluate the surface integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ where \mathbf{F} is the vector field $\mathbf{F}=z e^{x y} \mathbf{i}-3 z e^{x y} \mathbf{j}+$ $x y \mathbf{k}$ and the oriented surface S is the parallelogram of problem 1, with upward orientation. (In other words, find the flux of \mathbf{F} across S.)

6 16.7.45 Use Gauss's Law to find the charge contained in the solid hemisphere $x^{2}+y^{2}+z^{2} \leq$ $a^{2}, z \geq 0$, if the electric field is

$$
\mathbf{E}(x, y, z)=\langle x, y, 2 z\rangle .
$$

