MA 213 Worksheet \#25

Section 16.8

1 16.8.3 Use Stokes' Theorem to evaluate $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$ for

$$
\mathbf{F}(x, y, z)=z e^{y} \mathbf{i}+x \cos (y) \mathbf{j}+x z \sin (y) \mathbf{k},
$$

where S is the hemisphere $x^{2}+y^{2}+z^{2}=16, y \geq 0$, oriented in the direction of the positive y-axis.

2 16.8.7 Use Stokes' Theorem to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ (where C is oriented counterclockwise as viewed from above) for

$$
\mathbf{F}(x, y, z)=\left(x+y^{2}\right) \mathbf{i}+\left(y+z^{2}\right) \mathbf{j}+\left(z+x^{2}\right) \mathbf{k}
$$

where C is the triangle with vertices $(1,0,0),(0,1,0)$, and $(0,0,1)$

3 16.8.13 Verify that Stokes' Theorem is true for the vector field $\mathbf{F}(x, y, z)=-y \mathbf{i}+x \mathbf{j}-2 \mathbf{k}$ and surface S is the cone $z^{2}=x^{2}+y^{2}, 0 \leq z \leq 4$, oriented downward.

Additional Recommended Problems

4 16.8.5 Use Stokes' Theorem to evaluate $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$, for $\mathbf{F}(x, y, z)=x y z \mathbf{i}+x y \mathbf{j}+x^{2} y z \mathbf{k}, S$ consists of the top and the four sides (but not the bottom) of the cube with vertices $(\pm 1, \pm 1, \pm 1)$, oriented outward

5 16.8.10 Use Stokes' Theorem to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ (where C is oriented counterclockwise as viewed from above) for $\mathbf{F}(x, y, z)=2 y \mathbf{i}+x z \mathbf{j}+(x+y) \mathbf{k}$, and C is the curve of intersection of the plane $z=y+2$ and the cylinder $x^{2}+y^{2}=1$.

6 16.8.19 If S is a sphere and \mathbf{F} satisfies the hypotheses of Stokes' Theorem, show that $\iint_{S} \operatorname{curl} \mathbf{F}$. $d \mathbf{S}$

