MA 213 Worksheet \#26
 Section 16.9

1 16.9.3 Verify that the Divergence Theorem is true for the vector field $\mathbf{F}(x, y, z)=\langle z, y, x\rangle$ and E the solid ball $x^{2}+y^{2}+z^{2} \leq 16$.

2 16.9.5 Use the Divergence Theorem to calculate the surface integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ for

$$
\mathbf{F}(x, y, z)=x y e^{z} \mathbf{i}+x y^{2} z^{3} \mathbf{j}-y e^{z} \mathbf{k}
$$

and S is the surface of the box bounded by the coordinate planes and the planes $x=3, y=2$, and $z=1$.

3 16.9.7 Use the Divergence Theorem to calculate the surface integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ for

$$
x, y, z)=3 x y^{2} \mathbf{i}+x e^{z} \mathbf{j}+z^{3} \mathbf{k}
$$

and S is the surface of the solid bounded by the cylinder $y^{2}+z^{2}=1$ and the planes $x=-1$ and $x=2$.

Additional Recommended Problems

4 16.9.1 Verify that the Divergence Theorem is true for the vector field $\mathbf{F}(x, y, z)=3 x \mathbf{i}+x y \mathbf{j}+2 x z \mathbf{k}$ and E the cube bounded by the planes $x=0, x=1, y=0, y=1, z=0$, and $z=1$.

5 16.9.11 Use the Divergence Theorem to calculate the surface integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ for

$$
\mathbf{F}(x, y, z)=\left(2 x^{3}+y^{3}\right) \mathbf{i}+\left(y^{3}+z^{3}\right) \mathbf{j}+3 y^{2} z \mathbf{k}
$$

where S is the surface of the solid bounded by the paraboloid $z=1-x^{2}-y^{2}$ and the $x y$-plane.

6 16.9.25 Prove the following identity, assuming that S and E satisfy the conditions of the Divergence Theorem and the scalar functions and components of the vector fields have continuous second-order partial derivatives:

$$
\iint_{S} \mathbf{a} \cdot \mathbf{n} d S=0 \text { where } \mathbf{a} \text { is a constant vector. }
$$

