MA 213 Worksheet \#27

Final Review

Unit IV Problems

1 Various line integrals
(a) 16.review.3(a) Write the definition of the line integral of a scalar function f along a smooth curve C with respect to arc length.
(b) 16.review.3(d) Write the definitions of the line integrals along C of a scalar function f with respect to x, y, and z.
(c) 16.review. 4 (a) Define the line integral of a vector field \mathbf{F} along a smooth curve C given by a vector function $\mathbf{r}(t)$.

2 Match up the following.

$$
\begin{array}{cl}
\text { gradient } & \text { turns a vector to a vector } \\
\text { curl } & \text { turns a scalar to a vector } \\
\text { divergence } & \text { turns a vector to a scalar }
\end{array}
$$

3 Parametrizing

(a) How many parameters do you need to parameterize a curve? How many parameters do you need to parameterize a surface?
(b) How do you parameterize the line segment between two points $A=\left(a_{1}, a_{2}, a_{3}\right)$ and $B=$ $\left(b_{1}, b_{2}, b_{3}\right)$?
(c) How do you parameterize a circle $z^{2}+x^{2}=c$? What about $y^{2}-z^{2}=c$?
(d) How do you parameterize an ellipsoid $4 x^{2}+9 y^{2}+6 z^{2}=36$?

4 16.review. 31 Verify that Stokes' Theorem is true for the vector field $\mathbf{F}(x, y, z)=x^{2} \mathbf{i}+y^{2} \mathbf{j}+z^{2} \mathbf{k}$, where S is the part of the paraboloid $z=1-x^{2}-y^{2}$ that lies above the $x y$-plane and S has upward orientation.

5 16.review. 35 Verify that the Divergence Theorem is true for the vector field $\mathbf{F}(x, y, z)=x \mathbf{i}+$ $y \mathbf{j}+z \mathbf{k}$, where E is the unit ball $x^{2}+y^{2}+z^{2} \leq 1$

6 16.review. 13 Show that \mathbf{F} is conservative and use this fact to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ along the given curve. Here:

$$
\begin{aligned}
\mathbf{F}(x, y, z) & =\left(4 x^{3} y^{2}-2 x y^{3}\right) \mathbf{i}+\left(2 x^{4} y-3 x^{2} y^{2}+4 y^{3}\right) \mathbf{j} \\
C: \mathbf{r}(t) & =(t+\sin \pi t) \mathbf{i}+(2 t+\cos \pi t) \mathbf{j}, 0 \leq t \leq 1
\end{aligned}
$$

Unit I-III Problems

7 (a) 15.review. 7 How do you evaluate $\iiint_{E} f(x, y, z) d V$? How do you find the bounds using the bounded solid region E ?
(b) 15.review. 10 If a transformation T is given by $x=g(u, v), y=h(u, v)$, what is the Jacobian of T ? How do you change variables in a double integral? A triple integral?
(c) 14.review.13(a) Write an expression as a limit for the directional derivative of f at $\left(x_{0}, y_{0}\right)$ in the direction of a unit vector $\mathbf{u}=\langle a, b\rangle$.
(d) Given a surface $\mathbf{r}(u, v)$, how to find its tangent plane at a given point P ?

8 15.review. 25 Calculate the value of the multiple integral.
$\iint_{D} y d A$, where D is the region in the first quadrant bounded by the parabolas $x=y^{2}$ and $x=8-y^{2}$.

9 15.review. 30 Calculate the value of the multiple integral.
$\iiint_{T} y d V$, where T is the solid tetrahedron with vertices $(0,0,0),\left(\frac{1}{3}, 0,0\right),(0,1,0)$ and $(0,0,1)$.
10 15.review. 47 Use polar coordinates to evaluate

$$
\int_{0}^{3} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}}\left(x^{3}+x y^{2}\right) d y d x
$$

11 14.review. 35 If $u=x^{2} y^{3}+z^{4}$, where $x=p+3 p^{2}, y=p e^{p}$, and $z=p \sin (p)$, use the Chain Rule to find $d u / d p$.

12 14.review. 56 Find the absolute maximum and minimum values of f on the set $D . f(x, y)=$ $e^{-x^{2}-y^{2}}\left(x^{2}+2 y^{2}\right) ; D$ is the disk $x^{2}+y^{2} \leq 4$.

1314 Using Lagrange multipliers find the points on the sphere $x^{2}+y^{2}+z^{2}=4$ that are closest to the point $(3,1,-1)$.

14 13.review.2 Let $r(t)=\left\langle\sqrt{2-t},\left(e^{t}-1\right) / t, \ln (t+1)\right\rangle$.
(a) Find the domain of r.
(b) Find $\lim _{t \rightarrow 0} r(t)$.
(c) Find $r^{\prime}(t)$.

15 13.4.7 Find the position vector of a particle that has acceleration vector $a(t)=2 t \mathbf{i}+\sin (t) \mathbf{j}+$ $\cos (2 t) \mathbf{k}$, initial velocity $v(0)=\mathbf{i}$, and initial position $r(0)=\mathbf{j}$.

16 12.review. 7 Assume $u \cdot(v \times w)=2$. Find
(a) $(u \times v) \cdot w$
(b) $u \cdot(w \times v)$

1712 Find a vector perpendicular to the plane through the points $A=(1,0,0), B=(2,0,-1)$, $C=(1,4,3)$. Find the area of the triangle ABC.

