Math 213 Exam 1

Name: \qquad Section: \qquad

Do not remove this answer page - you will return the whole exam. You will be allowed two hours to complete this test. No books or notes may be used other than a onepage "cheat sheet" of notes, formulas, etc., written or typeset on one or both sides of an $8-1 / 2^{\prime \prime} \times 11^{\prime \prime}$ sheet of paper. You may use a graphing calculator during the exam, but NO calculator with a Computer Algebra System (CAS) or a QWERTY keyboard is permitted. Absolutely no cell phone use during the exam is allowed.

The exam consists of 6 free-response questions. Please follow these guideines to receive maximum credit.

- Each question is followed by a space to write your answer. Please write your answer neatly in the space provided.
- Show all work to receive full credit on the free response problems. You will be graded on the clarity of your presentation as well as the correctness of your answers.
- Give exact answers, rather than decimal equivalents, unless otherwise instructed (e.g., $\sqrt{2}$, not 1.414).

Question	1	2	3	4	5	6	Total
Possible	10	18	18	18	18	18	100
Score							

1. (Vector Basics - 10 points) Suppose that $\mathbf{a}=\langle 3,4\rangle, \mathbf{b}=\langle 9,-1\rangle$. Find:
(a) (3 points) $4 \mathbf{a}+2 \mathbf{b}$
(b) (4 points) $|\mathbf{a}-\mathbf{b}|$
(c) (3 points) $\mathbf{a} \cdot \mathbf{b}$
2. (Dot and Cross Products - 18 points)
(a) (4 points) If $\mathbf{a}=\langle 2,-1,3\rangle$ and $\mathbf{b}=\langle 4,2,1\rangle$, find $\mathbf{a} \times \mathbf{b}$ and $\mathbf{b} \times \mathbf{a}$.
(b) (4 points) Use the scalar triple product to verify that the vectors $\mathbf{u}=\mathbf{i}+5 \mathbf{j}-2 \mathbf{k}$, $\mathbf{v}=3 \mathbf{i}-\mathbf{j}$, and $\mathbf{w}=5 \mathbf{i}+9 \mathbf{j}-4 \mathbf{k}$ are coplanar. Be sure to justify your conclusion.
(c) (10 points) Using dot products, find the acute angle between the lines $2 x-y=3$ and $3 x+y=7$ shown below. Be sure to explain how the dot product is used, with what vectors, and why!

3. (18 points - Equations of Lines and Planes)
(a) (6 points) Find the parametric and symmetric equations for the line through the points $(0,0,0)$ and $(4,3,1)$.
(b) (6 points) Find the equation of the plane through the origin and perpendicular to the vector $\langle 1,-2,4\rangle$.
(c) (6 points) Determine whether the planes $x+2 y-z=2$ and $2 x-2 y+z=1$ are parallel, perpendicular, or neither.
4. (Quadric Surfaces - 18 points)
(a) (9 points) Sketch the surface $x^{2}+z^{2}=1$ on the axes provided. Also, please provide the information requested below the sketch.

Specify the axis of symmetry:

Describe the cross-sections perpendicular to the axis of symmetry.

Name the surface:
(b) (9 points) Sketch the surface $x^{2}+z^{2}=y^{2}$ on the axes provided. Also, please provide the information requested below your sketch.

Identify the traces in planes parallel to the $x y$-plane by equation and by name.

Identify the traces in planes parallel to the $x z$-plane by equation and by name.

Identify the traces in planes parallel to the $y z$-plane by equation and by name.

Name the surface:
5. (Vector Functions, Derivatives, Integrals - 18 points)
(a) (4 points) Find the unit tangent $\mathbf{T}(t)$ to the curve

$$
\mathbf{r}(t)=\left\langle t^{2}-2 t, 1+3 t, t^{3} / 3+t^{2} / 2\right\rangle
$$

at $t=2$.
(b) (3 points) Find a formula for $\mathbf{r}^{\prime}(t)$ for the vector function $\mathbf{r}(t)=\left\langle t^{2}, t^{3}\right\rangle$.
(c) (4 points) Below is the curve $\mathbf{r}(t)$ from part (b) for $0 \leq t \leq \sqrt{3}$. Sketch and label the position vector $\mathbf{r}(1)$ starting at the origin and label the point P having position vector $\mathbf{r}(1)$. Then sketch and label the tangent vector $\mathbf{r}^{\prime}(1)$ starting at the point P.

(d) (7 points) Find a vector function that represents the intersection of the hyperbolic paraboloid ("saddle") $z=x^{2}-y^{2}$ and the cylinder $x^{2}+y^{2}=1$. Hint: First parameterize x and y to move along the circle of radius 1 .
6. (Motion in Space - 18 points)

A projectile is fired with initial speed of $200 \mathrm{~m} / \mathrm{s}$ and angle of elevation 60°. Recall that the acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{sec}^{2}$.
(a) (3 points) Find the initial velocity vector \mathbf{v}_{0}.
(b) (3 points) Find the equation for $\mathbf{r}(t)$, the position of the projectile as a function of time.
(c) (3 points) Find the time of impact.
(d) (3 points) Find the maximum height reached.
(e) (3 points) Find an expression for $\mathbf{r}^{\prime}(t)$, the velocity of the projectile.
(f) (3 points) Find the speed of the projectile at impact.

