Math 213 Exam 2

Name: \qquad Section: \qquad

Do not remove this answer page - you will return the whole exam. You will be allowed two hours to complete this test. No books or notes may be used other than a onepage "cheat sheet" of notes, formulas, etc., written or typeset on one or both sides of an $8-1 / 2^{\prime \prime} \times 11^{\prime \prime}$ sheet of paper. You may use a graphing calculator during the exam, but NO calculator with a Computer Algebra System (CAS) or a QWERTY keyboard is permitted. Absolutely no cell phone use during the exam is allowed.

The exam consists of 6 free-response questions. Please follow these guidelines to receive maximum credit.

- Each question is followed by a space to write your answer. Please write your answer neatly in the space provided.
- Show all work to receive full credit on the free response problems. You will be graded on the clarity of your presentation as well as the correctness of your answers.
- Give exact answers, rather than decimal equivalents, unless otherwise instructed (e.g., $\sqrt{2}$, not 1.414).

Question	1	2	3	4	5	6	Total
Possible	10	18	18	18	18	18	100
Score							

1. (Limits and Continuity - 10 points) Find:
(a) (6 points) Find $\lim _{(x, y) \rightarrow(0,0)}\left(\frac{x^{3}+y^{3}}{x^{2} y+x y^{2}}\right)$ or show that it does not exist.
(b) (4 points) Find the set of all points (x, y) for which the function

$$
f(x, y)=\ln \left(9-x^{2}-y^{2}\right)
$$

is continuous.
2. (Partial Derivatives - 18 points)
(a) (9 points) Show that the function $u(x, y)=\ln \left(x^{2}+y^{2}\right)$ satisfies Laplace's equation

$$
u_{x x}+u_{y y}=0
$$

by computing $u_{x x}, u_{y y}$ and their sum. It will help to know that

$$
u_{x}(x, y)=\frac{2 x}{x^{2}+y^{2}}, \quad u_{y}(x, y)=\frac{2 y}{x^{2}+y^{2}}
$$

$$
u_{x x}(x, y)=
$$

\qquad

$$
u_{y y}(x, y)=
$$

\qquad
(b) (9 points) Use implicit differentiation to find $\partial z / \partial x$ and $\partial z / \partial y$ if

$$
x^{2}-y^{2}+z^{2}-2 z=4
$$

3. (18 points - Tangent Planes, Linear Approximation)
(a) (9 points) Find the equation of the tangent plane to the surface $z=x / y^{2}$ at the point $(-4,2,-1)$. Express your answer in the form $z=a x+b y+c$.
(b) (9 points) Find the linear approximation to the function

$$
f(x, y)=2-x y \cos \pi y
$$

at $(1,2)$ and use it to estimate $f(1.02,1.97)$
4. (Chain Rule, Directional Derivatives - 18 points)
(a) (9 points) Suppose that

$$
w=x y^{2}
$$

and

$$
x=r \cos \theta, y=r \sin \theta
$$

Use the chain rule to find $\partial w / \partial r$ when $r=2, \theta=\pi / 4$. Note that any other solution method will receive no credit.
(b) (9 points) Find the maximum rate of change of the function $f(x, y)=4 y \sqrt{x}$ at the point $(4,1)$. Find the direction in which it occurs by computing a unit vector in the direction of greatest change.
5. (Maxima and Minima)
(a) (9 points) Find the local maximum and minimum values and saddle points for the function

$$
f(x, y)=x^{3}-3 x+3 x y^{2}
$$

For each critical point, write down the Hessian matrix for the critical point, and explain why the critical point is a local maximum, a local minimum, or a saddle.
(b) (9 points) Find the points on the cone $z^{2}=x^{2}+y^{2}$ that are closest to the point $(4,2,0)$. Hint: You can minimize the distance squared to make computations easier.
6. (Lagrange Multipliers - 18 points) Find the extreme values (maximum and minimum) of the function

$$
f(x, y)=x e^{y}
$$

subject to the constraint

$$
x^{2}+y^{2}=2
$$

Note that a solution by any method other than Lagrange multipliers will receive no credit.

