Math 213 Exam 4

Name: \qquad Section: \qquad

Do not remove this answer page - you will return the whole exam. You will be allowed two hours to complete this test. No books or notes may be used other than a onepage "cheat sheet" of notes, formulas, etc., written or typeset on one or both sides of an $8-1 / 2^{\prime \prime} \times 11^{\prime \prime}$ sheet of paper. You may use a graphing calculator during the exam, but NO calculator with a Computer Algebra System (CAS) or a QWERTY keyboard is permitted. Absolutely no cell phone use during the exam is allowed.

The exam consists of 8 free-response questions. Please follow these guidelines to receive maximum credit.

- Each question is followed by a space to write your answer. Please write your answer neatly in the space provided.
- Show all work to receive full credit on the free response problems. You will be graded on the clarity of your presentation as well as the correctness of your answers.
- Give exact answers, rather than decimal equivalents, unless otherwise instructed (e.g., $\sqrt{2}$, not 1.414).

Question	1	2	3	4	5	6	7	8	Free	Total
Possible	10	15	10	10	10	15	10	15	5	100
Score									5	

1. (10 points) Consider the points $A(0,0,1), B(-1,0,4)$, and $C(1,2,1)$.
(a) (5 points) Find a vector perpendicular to the plane that contains these three points.
(b) (5 points) Find the area of the triangle $\triangle A B C$.
2. (15 points) A catapult launches a stone at a height of 10 feet and an angle of $\pi / 6$ radians, with an initial speed of 250 feet per second. Recall that the acceleration due to gravity is $-32 \mathrm{ft} / \mathrm{sec}^{2}$.
(a) (5 points) Write down a vector equation for the position of the stone at time t.
(b) (10 points) Suppose 300 feet away there is a castle wall 100 feet tall. Does the stone pass over the wall?
3. (10 points) Use the chain rule to find the following derivatives.

$$
\begin{gathered}
z=x^{2}+x^{2} y, \quad x=s+2 t \quad y=s t \\
\frac{\partial z}{\partial s}, \frac{\partial z}{\partial t} \quad \text { when } \quad s=1, t=2 .
\end{gathered}
$$

4. (10 points) Use Lagrange multipliers to find the extreme value(s) of the function

$$
f(x, y, z)=2 x-y+z
$$

on the sphere $x^{2}+y^{2}+z^{2}=6$.
5. (10 points) Set up but do not evaluate the triple integral of an arbitrary continuous function $f(x, y, z)$ in spherical coordinates over the region E shown in the figure below.

6. (15 points) Consider the transformation T from the $u v$-plane to the $x y$-plane given by

$$
T: \quad x=u+2 v, \quad y=3 u-3 v
$$

(a) (3 points) Compute the inverse transformation T^{-1}.
(b) (4 points) Compute the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$ of T.
(c) (4 points) Let S be the rectangle in the $u v$-plane with vertices $(1,0),(4,0),(4,2)$, $(1,2)$. Show that $T(S)$ is the parallelogram R in the $x y$-plane with vertices $(1,3)$, $(4,12),(8,6),(5,-3)$.

u	v	$x=u+2 v$	$y=3 u-3 v$
1	0		
4	0		
4	2		
1	2		

(d) (6 points) Use the change of variables formula to compute

$$
\iint_{R} \frac{3 x-y}{3 x+2 y} d A
$$

7. (10 points) (a) (6 points) Find a potential function f for the vector field

$$
\mathbf{F}(x, y)=\left(3+2 x y^{2}\right) \mathbf{i}+2 x^{2} y \mathbf{j}
$$

(b) (4 points) Using the potential function from part (a), find $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ if C is the arc of the hyperbola $y=1 / x$ from $(1,1)$ to $\left(4, \frac{1}{4}\right)$.
8. (15 points) Use Green's Theorem to evaluate $\oint_{C} y e^{x} d x+2 e^{x} d y$ if C is the rectangle with vertices $(0,0),(3,0),(3,4)$, and $(0,4)$.

