Math 213 Exam 4

Name:	Section:

Do not remove this answer page — you will return the whole exam. You will be allowed two hours to complete this test. No books or notes may be used other than a one-page "cheat sheet" of notes, formulas, etc., written or typeset on one or both sides of an $8-1/2'' \times 11''$ sheet of paper. You may use a graphing calculator during the exam, but NO calculator with a Computer Algebra System (CAS) or a QWERTY keyboard is permitted. Absolutely no cell phone use during the exam is allowed.

The exam consists of 8 free-response questions. Please follow these guidelines to receive maximum credit.

- Each question is followed by a space to write your answer. Please write your answer *neatly* in the space provided.
- Show <u>all work</u> to receive full credit on the free response problems. You will be graded on the clarity of your presentation as well as the correctness of your answers.
- Give exact answers, rather than decimal equivalents, unless otherwise instructed (e.g., $\sqrt{2}$, not 1.414).

Question	1	2	3	4	5	6	7	8	Free	Total
Possible	10	15	10	10	10	15	10	15	5	100
Score									5	

- 1. (10 points) Consider the points A(0,0,1), B(-1,0,4), and C(1,2,1).
 - (a) (5 points) Find a vector perpendicular to the plane that contains these three points.

(b) (5 points) Find the area of the triangle $\triangle ABC$.

2. (15 points) A catapult launches a stone at a height of 10 feet and an angle of $\pi/6$ radians, with an initial speed of 250 feet per second. Recall that the acceleration due to gravity is -32 ft/sec².

(a) (5 points) Write down a vector equation for the position of the stone at time *t*.

(b) (10 points) Suppose 300 feet away there is a castle wall 100 feet tall. Does the stone pass over the wall?

3. (10 points) Use the chain rule to find the following derivatives.

$$z = x^2 + x^2 y$$
, $x = s + 2t$ $y = st$
 $\frac{\partial z}{\partial s}$, $\frac{\partial z}{\partial t}$ when $s = 1, t = 2$.

4. (10 points) Use Lagrange multipliers to find the extreme value(s) of the function

$$f(x, y, z) = 2x - y + z$$

on the sphere $x^2 + y^2 + z^2 = 6$.

5. (10 points) Set up but do not evaluate the triple integral of an arbitrary continuous function f(x, y, z) in spherical coordinates over the region *E* shown in the figure below.

6. (15 points) Consider the transformation *T* from the *uv*-plane to the *xy*-plane given by

 $T: \quad x = u + 2v, \quad y = 3u - 3v.$

(a) (3 points) Compute the inverse transformation T^{-1} .

(b) (4 points) Compute the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$ of *T*.

(c) (4 points) Let *S* be the rectangle in the *uv*-plane with vertices (1,0), (4,0), (4,2), (1,2). Show that *T*(*S*) is the parallelogram *R* in the *xy*-plane with vertices (1,3), (4,12), (8,6), (5,-3).

и	υ	x = u + 2v	y=3u-3v
1	0		
4	0		
4	2		
1	2		

(d) (6 points) Use the change of variables formula to compute

$$\iint_R \frac{3x-y}{3x+2y} \, dA.$$

7. (10 points) (a) (6 points) Find a potential function f for the vector field

$$\mathbf{F}(x,y) = (3+2xy^2)\mathbf{i} + 2x^2y\mathbf{j}$$

(b) (4 points) Using the potential function from part (a), find $\int_C \mathbf{F} \cdot d\mathbf{r}$ if *C* is the arc of the hyperbola y = 1/x from (1, 1) to $(4, \frac{1}{4})$.

8. (15 points) Use Green's Theorem to evaluate $\oint_C ye^x dx + 2e^x dy$ if *C* is the rectangle with vertices (0,0), (3,0), (3,4), and (0,4).

