Math 213 Exam 4

Name: \qquad Section: \qquad

Do not remove this answer page - you will return the whole exam. You will be allowed two hours to complete this test. No books or notes may be used other than a onepage "cheat sheet" of notes, formulas, etc., written or typeset on one or both sides of an $8-1 / 2^{\prime \prime} \times 11^{\prime \prime}$ sheet of paper. You may use a graphing calculator during the exam, but NO calculator with a Computer Algebra System (CAS) or a QWERTY keyboard is permitted. Absolutely no cell phone use during the exam is allowed.

The exam consists of 8 free-response questions. Please follow these guidelines to receive maximum credit.

- Each question is followed by a space to write your answer. Please write your answer neatly in the space provided.
- Show all work to receive full credit on the free response problems. You will be graded on the clarity of your presentation as well as the correctness of your answers.
- Give exact answers, rather than decimal equivalents, unless otherwise instructed (e.g., $\sqrt{2}$, not 1.414).

Question	1	2	3	4	5	6	7	8	Free	Total
Possible	10	15	10	10	10	15	10	15	5	100
Score									5	

1. (10 points) Consider the points $A(0,0,1), B(-1,0,4)$, and $C(1,2,1)$.
(a) (5 points) Find a vector perpendicular to the plane that contains these three points.

Solution: Take the cross product of $\overrightarrow{A B}$ and $\overrightarrow{A C}$:

$$
\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-1 & 0 & 3 \\
1 & 2 & 0
\end{array}\right|=-6 \mathbf{i}+3 \mathbf{j}+-2 \mathbf{k}
$$

2 points Compute $\overrightarrow{A B}$ and $\overrightarrow{B C}$
(or other possible pairs of vectors)
2 points Compute cross product
1 point Answer
(b) (5 points) Find the area of the triangle $\triangle A B C$.

Solution: The magnitude of $\overrightarrow{A B} \times \overrightarrow{A C}$ is the area of the parallelogram spanned by these two vectors. Hence,

Area $(\triangle A B C)=\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}|=\frac{1}{2} \sqrt{36+9+4}=\frac{7}{2}$

2 points State correct formula for area using cross product
1 point Formula contains factor of $1 / 2$
2 points Answer
2. (15 points) A catapult launches a stone at a height of 10 feet and an angle of $\pi / 6$ radians above the horizontal, with an initial speed of 250 feet per second. Recall that the acceleration due to gravity is $-32 \mathrm{ft} / \mathrm{sec}^{2}$.
(a) (7 points) Write down a vector equation for the position $\mathbf{r}(t)$ of the stone at time t.

Solution: The initial acceleration is

$$
\mathbf{r}^{\prime \prime}(0)=-32 \mathbf{j} \quad(1 \text { point })
$$

The initial velocity is

$$
\mathbf{r}^{\prime}(0)=125 \sqrt{3} \mathbf{i}+125 \mathbf{j} \quad(1 \text { point })
$$

feet per second, so that

$$
\mathbf{r}^{\prime}(t)=125 \sqrt{3} t \mathbf{i}+(125-32 t) \mathbf{j} . \quad(2 \text { points })
$$

Finally, the initial position is

$$
\mathbf{r}(0)=10 \mathbf{j} \quad(1 \text { point })
$$

Hence

$$
\mathbf{r}(t)=(125 \sqrt{3} t) \mathbf{i}+\left(10+125 t-16 t^{2}\right) \mathbf{j} \quad(2 \text { points })
$$

or equivalently

$$
x(t)=125 \sqrt{3} t, \quad y(t)=10+125 t-16 t^{2}
$$

(b) (8 points) Suppose 300 feet away there is a castle wall 100 feet tall. Does the stone pass over the wall?

Solution: First, we determine at what time t the stone is 300 feet away from its starting point:

$$
\begin{align*}
125 \sqrt{3} t & =300 \\
t & =\frac{300}{125 \sqrt{3}}=\frac{12}{5 \sqrt{3}} \tag{3points}
\end{align*}
$$

Next, the height of the projectile at this time t is

$$
y\left(\frac{12}{5 \sqrt{3}}\right)=10+125\left(\frac{12}{5 \sqrt{3}}\right)-16\left(\frac{12}{5 \sqrt{3}}\right)^{2}=\simeq 152.48 \mathrm{ft}
$$

(4 points)
So the stone passes over the castle wall. (1 point)
3. (10 points) Use the chain rule to find the following derivatives.

$$
\begin{gathered}
z=x^{2}+x^{2} y, \quad x=s+2 t \quad y=s t \\
\frac{\partial z}{\partial s}, \frac{\partial z}{\partial t} \quad \text { when } \quad s=1, t=2 .
\end{gathered}
$$

Solution: First note that for $s=1, t=2$ we have

$$
\begin{array}{ll}
& x=5, \quad y=2 . \\
\frac{\partial z}{\partial x}=2 x+2 x y=30 & \frac{\partial z}{\partial y}=x^{2}=25 \\
\frac{\partial x}{\partial s}=1 & \frac{\partial y}{\partial s}=t=2 \\
\frac{\partial x}{\partial t}=2 & \frac{\partial y}{\partial t}=s=1
\end{array}
$$

(1 point each, total 6 points)
Hence

$$
\begin{aligned}
\frac{\partial z}{\partial s} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \\
& =30 \cdot 1+25 \cdot 2=80 \quad \text { (1 point) } \\
\frac{\partial z}{\partial t} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t} \\
& =30 \cdot 2+25 \cdot 1=85 \quad \text { (1 point) }
\end{aligned}
$$

4. (10 points) Use Lagrange multipliers to find the extreme value(s) of the function

$$
f(x, y, z)=2 x-y+z
$$

on the sphere $x^{2}+y^{2}+z^{2}=6$.

Solution: The constraint function is $g(x, y, z)=x^{2}+y^{2}+z^{2}-6$. The equation $\nabla f=\lambda \nabla g$ is

$$
\langle 2,-1,1\rangle=\lambda\langle 2 x, 2 y, 2 z\rangle . \quad(2 \text { points })
$$

$\lambda \neq 0$ for otherwise we have a nonzero vector $\langle 2,-1,1\rangle$ equal to the zero vector. (1 point)

Solve for λ :

$$
\lambda=\frac{1}{x}=-\frac{1}{2 y}=\frac{1}{2 z}
$$

or

$$
x=-2 y=2 z \quad(1 \text { point })
$$

Substitute into the equation of the sphere gives

$$
\begin{aligned}
x^{2}+(-x / 2)^{2}+(x / 2)^{2} & =6 \\
6 x^{2} & =6(4)
\end{aligned}
$$

$$
x^{2}=4 \quad(2 \text { points })
$$

This gives the points

$$
A=(2,-1,1) \quad(1 \text { point })
$$

and

$$
B=(-2,1,-1) . \quad(1 \text { point })
$$

It is easy to see that A gives a positive value in f and B a negative value. Computing these values we obtain the maximum

$$
f(2,-1,1)=6 \quad(1 \text { point })
$$

and the minimum

$$
f(-2,1,1)=-6 \quad(1 \text { point })
$$

5. (10 points) Set up but do not evaluate the triple integral of an arbitrary continuous function $f(x, y, z)$ in spherical coordinates over the region E shown in the figure below

Solution: The region in the figure is described in spherical coordinates by the inequalities

$$
\left.\begin{array}{rl}
1 & \leq \rho
\end{array}\right) \quad(2 \text { points) }) ~(2 \text { points) }
$$

SO

$$
\begin{aligned}
& \iiint_{E} f(x, y, z) d V= \\
& \qquad \int_{0}^{\pi / 2} \int_{\pi / 2}^{2 \pi} \int_{1}^{2} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \theta d \phi
\end{aligned}
$$

Integral:
1 points Correct Jacobian factor $\rho^{2} \sin \phi$
3 points Correct substitutions for x, y, z at 1 point each
6. (15 points) Consider the transformation T from the $u v$-plane to the $x y$-plane given by

$$
T: \quad x=u+2 v, \quad y=3 u-3 v
$$

(a) (3 points) Compute the inverse transformation T^{-1}.

Solution:

$$
\begin{aligned}
& u=\frac{1}{3} x+\frac{2}{9} y \\
& v=\frac{1}{3} x-\frac{1}{9} y
\end{aligned}
$$

(1 bonus point for correct answer)
(b) (4 points) Compute the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$ of T.

Solution:

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{cc}
1 & 2 \\
3 & -3
\end{array}\right|=-9
$$

2 points Correct entries in Jacobian matrix
2 points Answer
(c) (4 points) Let S be the rectangle in the $u v$-plane with vertices $(1,0),(4,0),(4,2)$, $(1,2)$. Show that $T(S)$ is the parallelogram R in the $x y$-plane with vertices $(1,3)$, $(4,12),(8,6),(5,-3)$.

u	v	$x=u+2 v$	$y=3 u-3 v$
1	0	1	3
4	0	4	12
4	2	8	6
1	2	5	-3

(1 point per correct row)
(d) (6 points) Use the change of variables formula to compute

$$
\iint_{R} \frac{3 x-y}{3 x+2 y} d A
$$

Solution: First, compute

$$
\frac{3 x-y}{3 x+2 y}=\frac{9 v}{9 u}=\frac{v}{u} \quad(1 \text { point })
$$

Then (remembering the Jacobian factor, which is $|-9|=9$)

$$
\begin{aligned}
\iint_{R} \frac{3 x-y}{3 x+2 y} d A & =\int_{1}^{4} \int_{0}^{2} \frac{v}{u} 9 d v d u \\
& =9 \int_{1}^{4} \frac{1}{u}\left[\frac{v^{2}}{2}\right]_{0}^{2} d u \\
& =18 \int_{1}^{4} \frac{1}{u} d u \\
& =18 \ln (4)
\end{aligned}
$$

7. (10 points) (a) (6 points) Find a potential function f for the vector field

$$
\mathbf{F}(x, y)=\left(3+2 x y^{2}\right) \mathbf{i}+2 x^{2} y \mathbf{j}
$$

Solution: We seek a scalar function f so that

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=3+2 x y^{2} \\
& \frac{\partial f}{\partial y}=2 x^{2} y
\end{aligned}
$$

Integrating the first of these two equations in x we get

$$
f(x, y)=3 x+x^{2} y^{2}+C(y) \quad(1 \text { point })
$$

Substituting this result in the second equation above we get

$$
2 x^{2} y+C^{\prime}(y)=2 x^{2} y \quad(1 \text { point })
$$

or $C^{\prime}(y)=0 .(1$ point)
Hence

$$
f(x, y)=3 x+2 x^{2} y+C \quad(1 \text { point })
$$

where C is a constant.
(b) (4 points) Using the potential function from part (a), find $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ if C is the arc of the hyperbola $y=1 / x$ from $(1,1)$ to $\left(4, \frac{1}{4}\right)$.

Solution: Since F is a gradient vector field

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =f\left(4, \frac{1}{4}\right)-f(1,1) \\
& =15
\end{aligned}
$$

8. (15 points) Use Green's Theorem to evaluate $\oint_{C} y e^{x} d x+2 e^{x} d y$ if C is the rectangular path with vertices $(0,0),(3,0),(3,4)$, and $(0,4)$.

Solution: The path shown is oriented counterclockwise and the integrand is of the form $P(x, y) d x+Q(x, y) d y$ where

$$
P(x, y)=y e^{x}, \quad Q(x, y)=2 e^{x} . \quad(2 \text { points })
$$

Note that

$$
\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=2 e^{x}-e^{x}=e^{x} . \quad(2 \text { points })
$$

Denote by R the rectangle with vertices $(0,0),(3,0),(3,4)$, and $(0,4)$. Hence, by Green's theorem,

$$
\begin{aligned}
\oint_{C} y e^{x} d x+2 e^{x} d y & =\iint_{R} e^{x} d A \\
& =\int_{0}^{3} \int_{0}^{4} e^{x} d y d x \\
& =4 \int_{0}^{3} e^{x} d x \\
& =4\left(e^{3}-1\right)
\end{aligned}
$$

(Correct Answer - 1 Bonus Point)

