MA 213 - Calculus III Exam 3

Spring 2018
April 11, 2018

Exam Scores

Do not write in the table below

Name: \qquad

Section: \qquad

Last 4 digits of student ID \#: \qquad

- No books or notes may be used.
- Turn off all your electronic devices and do not wear ear-plugs during the exam.
- You may use a calculator, but not one which has symbolic manipulation capabilities or a QWERTY keyboard.
- Additional blank sheets for scratch work are available upon request.
- All questions are free response questions. Show all your work on the page of the problem. Clearly indicate your answer and the reasoning used to arrive at that answer.

Question	Score	Total
1		10
2		10
3		10
4		10
5		10
6		10
7		10
8		10
9		10
10		10
Total		100

Free Response. Show your work!

1. (10 points) Evaluate

$$
\iint_{R} \frac{x y^{2}}{x^{2}+1} d A
$$

where $R=\{(x, y) \mid 0 \leq x \leq 1,-3 \leq y \leq 3\}$.
2. (10 points) Change the order of integration in

$$
\int_{1}^{2} \int_{0}^{\ln x} f(x, y) d y d x
$$

i.e. determine A, B, C, D for which

$$
\int_{1}^{2} \int_{0}^{\ln x} f(x, y) d y d x=\int_{A}^{B} \int_{C}^{D} f(x, y) d x d y
$$

3. (10 points) Set up an iterated integral in polar coordinates to compute the area inside the circle $(x-1)^{2}+y^{2}=1$ and outside the circle $x^{2}+y^{2}=1$. Do not evaluate the integral.
4. (10 points) Find the average distance from a point (x, y) of the disk $x^{2}+y^{2} \leq R^{2}$ to its center.

Free Response. Show your work!

5. (10 points) Find the mass of a lamina occupying the region D in the $x y$-plane bounded by $y=1-x^{2}$ and $y=0$ if the density is $\rho(x, y)=3 y$.
6. (10 points) Find the surface area of the part of the plane $2 x+2 y+z=5$ inside the cylinder $x^{2}+y^{2}=3$.

Free Response. Show your work!

7. (10 points) Consider

$$
\iiint_{E} z d V
$$

where E is enclosed by

$$
z=0, \quad z=x^{2}+y^{2}, \quad \text { and } \quad x^{2}+y^{2}=4 .
$$

Use cylindrical coordinates to express this triple integral as an iterated integral. Do not evaluate the integral.
8. (10 points) Find the spherical coordinates (ρ, θ, ϕ) of a point whose rectangular coordinates are $(-1, \sqrt{3}, 2 \sqrt{3})$.
9. (10 points) Change to spherical coordinates

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{2-x^{2}-y^{2}}} x^{2} y^{3} d z d y d x
$$

Do not evaluate the integral.
10. (10 points) Evaluate

$$
\iiint_{E}\left(1+y e^{x^{2} z}\right) d V
$$

where E is the cube $E=[-1,1] \times[-1,1] \times[-1,1]$. [Hint: Integrate with respect to y first.]

