MA 213 - Calculus III
Exam 4

Spring 2018 May 2, 2018

Exam Scores

Do not write in the table below

Name: \qquad

Section:

\qquad

Last 4 digits of student ID \#: \qquad

- No books or notes may be used.
- Turn off all your electronic devices and do not wear ear-plugs during the exam.
- You may use a calculator, but not one which has symbolic manipulation capabilities or a QWERTY keyboard.
- Additional blank sheets for scratch work are available upon request.
- All questions are free response questions. Show all your work on the page of the problem. Clearly indicate your answer and the reasoning used to arrive at that answer.

Question	Score	Total
1		10
2		10
3		10
4		10
5		10
6		10
7		10
8		10
9		10
10		10
Total		100

Free Response. Show your work!

1. (10 points) The plane $8 x+b y+c z=d$ passes through the point $(3,5,-1)$ and contains the line

$$
x=4-t, \quad y=2 t-1, \quad z=-3 t .
$$

Find b, c, and d.
2. (10 points) Find the cosine of the angle θ between the vectors $\mathbf{a}=4 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$ and $\mathbf{b}=2 \mathbf{j}-\mathbf{k}$. Is θ acute or obtuse?

Free Response. Show your work!

3. (10 points) Find the parametric equations for the tangent line to the curve

$$
x=t, \quad y=e^{-t}, \quad z=2 t-t^{2}
$$

at the point $(0,1,0)$.
4. (10 points) Find the partial derivatives $f_{x}(3,-4)$ and $f_{y}(3,-4)$ for the function

$$
f(x, y)=\frac{2 x+y}{3 x+2 y} .
$$

Free Response. Show your work!

5. (10 points) Find the directional derivative of $f(x, y)=\sqrt{x y}$ at the point $P(2,8)$ in the direction of the point $Q(5,4)$.
6. (10 points) Use Lagrange multipliers to find the extreme values of $f(x, y, z)=2 x+2 y+z$ on the sphere $x^{2}+y^{2}+z^{2}=9$. You must use Lagrange multipliers: no other method will be accepted.
7. (10 points) Evaluate

$$
\int_{C} x^{2} y d s
$$

where C is the curve

$$
x=\cos t, \quad y=\sin t, \quad z=t, \quad(0 \leq t \leq \pi / 2)
$$

8. (10 points) Let E be the solid

$$
E=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leq 1, x \geq 0, z \geq 0\right\}
$$

Write the triple integral

$$
\iiint_{E} z e^{x^{2}+y^{2}+z^{2}} d V
$$

in spherical coordinates. Do not evaluate the integral.
9. (10 points) Let

$$
\mathbf{F}(x, y)=\left\langle 2 x e^{-y}, 2 y-x^{2} e^{-y}\right\rangle
$$

Find a potential function $f(x, y)$ for $\mathbf{F}(x, y)$ and evaluate

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r},
$$

where C is any path from $(1,0)$ to $(3,0)$.
10. (10 points) Use Green's theorem to evaluate

$$
\oint_{C} y^{3} d x-x^{3} d y
$$

where C is the positively oriented circle $x^{2}+y^{2}=4$. You must use Green's theorem: no other method will be accepted.

