Quiz 10

Name: \qquad Section and/or TA: \qquad
Answer all questions in a clear and concise manner. Unsupported answers will receive no credit.

1. (2 points) Find the curl and the divergence of the vector field

$$
\mathbf{F}(x, y, z)=\sin (y z) \mathbf{i}+\sin (x z) \mathbf{j}+\sin (x y) \mathbf{k}
$$

Solution: For divergence, we have

$$
\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}=\frac{\partial}{\partial x} \sin (y z)+\frac{\partial}{\partial y} \sin (x z)+\frac{\partial}{\partial z} \sin (x y)=0 .
$$

For curl, we have

$$
\begin{gathered}
\operatorname{curl} \mathbf{F}=\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\sin (y z) & \sin (x z) & \sin (x y)
\end{array}\right| \\
=(x \cos (x y)-x \cos (x z)) \mathbf{i}-(y \cos (x y)-y \cos (y z)) \mathbf{j}+(z \cos (x z)-z \cos (y z)) \mathbf{k}
\end{gathered}
$$

2. (3 points) Find an equation of the tangent plan to the surface with parametric equations $x=u^{2}+2 v^{3}, y=3 u$, and $z=5 v^{2}$ at the point $(2,6,5)$.

Solution: First we find

$$
\begin{gathered}
\mathbf{r}_{u}=2 u \mathbf{i}+3 \mathbf{j} \\
\mathbf{r}_{v}=6 v^{2} \mathbf{i}+10 v \mathbf{k} .
\end{gathered}
$$

Then

$$
\begin{aligned}
& \mathbf{r}_{u} \times \mathbf{r}_{v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 u & 3 & 0 \\
6 v^{2} & 0 & 10 v
\end{array}\right| \\
& =30 v \mathbf{i}-20 u v \mathbf{j}-18 v^{2} \mathbf{k}
\end{aligned}
$$

Since $(x, y, z)=(2,6,5)$ give $u=2$ and $v=-1$, we have

$$
\mathbf{r}_{u} \times \mathbf{r}_{v}=-30 \mathbf{i}+40 \mathbf{j}-18 \mathbf{k}
$$

So an equation for the tangent line is
or

$$
-30(x-2)+40(y-6)-18(z-5)=0
$$

$$
-30 x+40 y-18 z=90
$$

