Quiz 2

Name: \qquad Section and/or TA: \qquad
Answer all questions in a clear and concise manner. Unsupported answers will receive no credit.

1. (2 points) Consider the vectors $\mathbf{u}=\langle 1,4,-2\rangle$ and $\mathbf{v}=\langle 2,3,1\rangle$.
(a) (3 points) Find one unit vector orthogonal to \mathbf{u}, \mathbf{v}.

Solution: The cross product produces two possible orthogonal vectors, depending on the order in which you take the cross product.

$$
\begin{gathered}
\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 4 & -2 \\
2 & 3 & 1
\end{array}\right|=\left|\begin{array}{cc}
4 & -2 \\
3 & 1
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right| \mathbf{k}=\langle 10,-5,-5\rangle \\
\mathbf{v} \times \mathbf{u}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & 3 & 1 \\
1 & 4 & -2
\end{array}\right|=\left|\begin{array}{cc}
3 & 1 \\
4 & -2
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
2 & 1 \\
1 & -2
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
2 & 3 \\
1 & 4
\end{array}\right| \mathbf{k}=\langle-10,5,5\rangle
\end{gathered}
$$

These are not unit vectors, so we need to divide by the magnitude:

$$
|\langle 10,-5,-5\rangle|=|\langle-10,5,5\rangle|=\sqrt{100+25+25}=\sqrt{150}=5 \sqrt{6}
$$

Then the answer is either $\left\langle\frac{2}{\sqrt{6}}, \frac{-1}{\sqrt{6}}, \frac{-1}{\sqrt{6}}\right\rangle$ or $\left\langle\frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right\rangle$.
(b) (1 point) Verify mathematically that your solution from part (a) is orthogonal to u.

Solution: Nonzero vectors are orthogonal if and only if their dot product is zero. Then $\left\langle\frac{2}{\sqrt{6}}, \frac{-1}{\sqrt{6}}, \frac{-1}{\sqrt{6}}\right\rangle$ is orthogonal to \mathbf{u} since

$$
\left\langle\frac{2}{\sqrt{6}}, \frac{-1}{\sqrt{6}}, \frac{-1}{\sqrt{6}}\right\rangle \cdot\langle 1,4,-2\rangle=\frac{2}{\sqrt{6}}-\frac{4}{\sqrt{6}}+\frac{2}{\sqrt{6}}=0 .
$$

Likewise, $\left\langle\frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right\rangle$ is orthogonal to \mathbf{u} since

$$
\left\langle\frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right\rangle \cdot\langle 1,4,-2\rangle=\frac{-2}{\sqrt{6}}+\frac{4}{\sqrt{6}}-\frac{2}{\sqrt{6}}=0
$$

(c) (1 point) Find the area of the triangle formed between vectors \mathbf{u} and \mathbf{v}.

Solution: The area of the triangle is half the magnitude of their cross product, so $\frac{5 \sqrt{6}}{2}$.

