Quiz 3

Name: \qquad Section and/or TA: \qquad
Answer all questions in a clear and concise manner. Unsupported answers will receive no credit.

1. (2 points) Consider the points $A(2,1,0), B(-3,1,1)$, and $C(2,0,1)$.
(a) (1 point) Find a normal vector for the plane through A, B, and C.

Solution: First calculate two vectors in the plane: $\overrightarrow{A B}=\langle-5,0,1\rangle$ and $\overrightarrow{A C}=$ $\langle 0,-1,1\rangle$.
A normal vector to the plane is $\overrightarrow{A B} \times \overrightarrow{A C}$.

$$
\begin{gathered}
\overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right| \vec{i}-\left|\begin{array}{cc}
-5 & 1 \\
0 & 1
\end{array}\right| \vec{j}+\left|\begin{array}{cc}
-5 & 0 \\
0 & -1
\end{array}\right| \vec{k} \\
=\vec{i}+5 \vec{j}+5 \vec{k} \\
=\langle 1,5,5\rangle
\end{gathered}
$$

(b) (1 point) Write down an equation for the plane through A, B, and C.

Solution: Using the normal vector from part (a) the plane has equation

$$
x+5 y+5 z=d
$$

Evaluating at point A :

$$
(2)+5(1)+5(0)=d
$$

so $d=7$, which gives the plane equation as

$$
x+5 y+5 z=7
$$

2. (3 points) Consider the equation of a quadric surface:

$$
y^{2}+z^{2}-x=1
$$

Sketch traces for the surface corresponding to the values $x=0, y=0$, and $z=0$. Be sure to label the axes in your sketch.

