Quiz 5

Name: \qquad Section and/or TA: \qquad
Answer all questions in a clear and concise manner. Unsupported answers will receive no credit.

1. (2 points) Use the Chain Rule to find $\frac{d z}{d t}$ where $z=x^{2}+y^{2}+x y, x=\sin (t)$, and $y=e^{t}$. No need to simplify.

Solution: Recall $\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}$ We find: $\frac{\partial z}{\partial x}=2 x+y, \frac{\partial z}{\partial y}=2 y+x, \frac{d x}{d t}=\cos (t)$, and $\frac{d y}{d t}=e^{t}$. Thus $\frac{d z}{d t}=(2 x+y) \cos (t)+(2 y+x) e^{t}$.
2. (3 points) The function $f(x, y)=\frac{x}{x+y}$ is differentiable at the point $(2,1)$. Find the linearization $L(x, y)$ of the function at this point.

Solution: Computing the partial derivatives, we get

$$
\begin{aligned}
f_{x}(x, y) & =\frac{y}{(x+y)^{2}} \\
f_{x}(x, y) & =\frac{-x}{(x+y)^{2}}
\end{aligned}
$$

Then we find the linearization

$$
\begin{aligned}
L(x, y) & =f_{x}(2,1)(x-2)+f_{y}(2,1)(y-1)+f(2,1) \\
& =\frac{1}{9}(x-2)-\frac{2}{9}(y-1)+\frac{2}{3}
\end{aligned}
$$

