Quiz 5

Quiz 5

Name:

Section and/or TA: _____

Answer all questions in a clear and concise manner. Unsupported answers will receive *no credit*.

1. (2 points) Use the Chain Rule to find $\frac{dz}{dt}$ where $z = x^2 + y^2 + xy$, x = sin(t), and $y = e^t$. No need to simplify.

Solution: Recall $\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$ We find: $\frac{\partial z}{\partial x} = 2x + y$, $\frac{\partial z}{\partial y} = 2y + x$, $\frac{dx}{dt} = \cos(t)$, and $\frac{dy}{dt} = e^t$. Thus $\frac{dz}{dt} = (2x + y)\cos(t) + (2y + x)e^t$.

2. (3 points) The function $f(x, y) = \frac{x}{x+y}$ is differentiable at the point (2, 1). Find the linearization L(x, y) of the function at this point.

Solution: Computing the partial derivatives, we get $f_x(x,y) = \frac{y}{(x+y)^2}$ $f_x(x,y) = \frac{-x}{(x+y)^2}$

Then we find the linearization

$$L(x,y) = f_x(2,1)(x-2) + f_y(2,1)(y-1) + f(2,1)$$

= $\frac{1}{9}(x-2) - \frac{2}{9}(y-1) + \frac{2}{3}$