Quiz 6

Name: \qquad Section and/or TA:

Answer all questions in a clear and concise manner. Unsupported answers will receive no credit.

1. (2 points) Let $f(x, y)=x^{3} e^{x y}$.
(a) (1 point) Find $\nabla f(2,0)$.

Solution: $\nabla f=\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle=\left\langle x^{3} y e^{x y}+3 x^{2} e^{x y}, x^{4} e^{x y}\right\rangle$.

$$
\nabla f(2,0)=\langle 12,16\rangle
$$

(b) (1 point) Find the directional derivative of f at the point $(2,0)$ in the direction $\theta=\frac{\pi}{4}$.

Solution: In this case $\mathbf{u}=\left\langle\cos \frac{\pi}{4}, \sin \frac{\pi}{4}\right\rangle=\left\langle\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right\rangle$ so

$$
D_{\mathbf{u}} f(2,0)=\langle 12,16\rangle \cdot\left\langle\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right\rangle=6 \sqrt{2}+8 \sqrt{2}=14 \sqrt{2}
$$

2. (3 points) Find the critical point of $f(x, y)=x y-2 x-2 y-x^{2}-y^{2}$ and use the Second Derivative Test to determine if it is a local maximum, local minimum, or a saddle point.

Solution: $f_{x}=y-2-2 x=0$ when $y=2+2 x$ and $f_{y}=x-2-2 y=0$ when $x=2+2 y$. So $f_{x}=0=f_{y}$ when

$$
y=2+2(2+2 y)=6+4 y
$$

Hence we have a critical point at $(-2,-2)$. Since

$$
f_{x x}=-2 \quad f_{y y}=-2 \quad f_{x y}=1
$$

we have $D(-2,-2)=(-2)(-2)-(1)^{2}=3>0$. So $D(-2,-2)>0$ and $f_{x x}=$ $-2<0$ implies $(-2,-2)$ is a local maximum.

