Quiz 7

Name: \qquad Section and/or TA: \qquad
Answer all questions in a clear and concise manner. Unsupported answers will receive no credit.

1. (3 points) Compute the area of the region D bounded above by the line $y=x$ and below by the circle $x^{2}+y^{2}-2 y=0$ by converting to polar coordinates.

Solution: The polar form of the line $y=x$ is given by $\theta=\frac{\pi}{4}$, and the form for the circle is

$$
\begin{aligned}
& x^{2}+y^{2}=2 y \Rightarrow r^{2} \cos ^{2}(\theta)+r^{2} \sin ^{2}(\theta)=2 r \sin (\theta) \\
& \Rightarrow r^{2}=2 r \sin (\theta) \Rightarrow r=2 \sin (\theta)
\end{aligned}
$$

That is, the region D is determined by θ varying from 0 to $\frac{\pi}{4}$ while r varies from 0 to $2 \sin (\theta)$. The area then is given by integral

$$
\begin{aligned}
& A=\iint_{D} d A=\int_{0}^{\pi / 4} \int_{0}^{2 \sin (\theta)} r d r d \theta \\
& =\left.\int_{0}^{\pi / 4} \frac{1}{2} r^{2}\right|_{r=0} ^{r=2 \sin (\theta)} d \theta \\
& =\int_{0}^{\pi / 4} 2 \sin ^{2}(\theta) d \theta=\int_{0}^{\pi / 4} 2\left(\frac{1-\cos (2 \theta)}{2}\right) d \theta \\
& =\left.\left(\theta-\frac{1}{2} \sin (2 \theta)\right)\right|_{0} ^{\pi / 4}=\frac{\pi-2}{4}
\end{aligned}
$$

2. (2 points) Evaluate $\iiint_{B} z^{2} e^{x} d V$ where B is the box given by

$$
0 \leq x \leq 1, \quad 1 \leq y \leq 2, \quad-1 \leq z \leq 1
$$

Solution: Using Fubini's theorem we evaluate the integral in the order $d x d y d z$:

$$
\begin{aligned}
& \iiint_{B} z^{2} e^{x} d V=\int_{-1}^{1} \int_{1}^{2} \int_{0}^{1} z^{2} e^{x} d x d y d z \\
& =\left.\int_{-1}^{1} \int_{1}^{2} z^{2} e^{x}\right|_{x=0} ^{x=1} d y d z=\int_{-1}^{1} \int_{1}^{2} z^{2}(e-1) d y d z=\left.\int_{-1}^{1} z^{2}(e-1) y\right|_{y=1} ^{y=2} d z \\
& =\int_{-1}^{1} z^{2}(e-1) d z=\left.\frac{1}{3} z^{3}(e-1)\right|_{z=-1} ^{z=1}=\frac{2}{3}(e-1)
\end{aligned}
$$

